--- library_name: transformers license: apache-2.0 base_model: openai/gpt-oss-20b tags: - generated_from_trainer datasets: - HuggingFaceH4/Multilingual-Thinking model-index: - name: outputs/gpt-oss-out-fft/ results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.12.0.dev0` ```yaml base_model: openai/gpt-oss-20b use_kernels: true model_quantization_config: Mxfp4Config model_quantization_config_kwargs: dequantize: true block_size: 32 # default, matches the OCP spec strict: false # fallback to fp16 on any odd layers plugins: - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin experimental_skip_move_to_device: true # prevent OOM by NOT putting model to GPU before sharding datasets: # - path: winglian/pirate-ultrachat-10k # type: chat_template # split: train - message_property_mappings: content: content role: role path: HuggingFaceH4/Multilingual-Thinking trust_remote_code: false field_messages: messages type: chat_template dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./outputs/gpt-oss-out-fft/ sequence_len: 8192 sample_packing: true # adapter: lora # lora_r: 8 # lora_alpha: 16 # lora_dropout: 0.0 # lora_target_linear: true wandb_project: gpt-oss-20b wandb_name: multilingual-reasoning gradient_accumulation_steps: 1 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_torch_8bit lr_scheduler: constant_with_warmup learning_rate: 2e-5 bf16: true tf32: true flash_attention: true attn_implementation: kernels-community/vllm-flash-attn3 gradient_checkpointing: true activation_offloading: true logging_steps: 1 saves_per_epoch: 1 warmup_ratio: 0.1 special_tokens: eot_tokens: - "<|end|>" fsdp_version: 2 fsdp_config: offload_params: false state_dict_type: SHARDED_STATE_DICT auto_wrap_policy: TRANSFORMER_BASED_WRAP transformer_layer_cls_to_wrap: GptOssDecoderLayer reshard_after_forward: true ```

# outputs/gpt-oss-out-fft/ This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the HuggingFaceH4/Multilingual-Thinking dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - training_steps: 8 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4