File size: 3,404 Bytes
53ad38e
3283fbf
4779b69
 
53ad38e
 
4779b69
 
 
 
 
53ad38e
 
4779b69
 
53ad38e
4779b69
 
53ad38e
4779b69
 
 
 
 
53ad38e
4779b69
53ad38e
4779b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ad38e
 
4779b69
53ad38e
4779b69
53ad38e
4779b69
53ad38e
4779b69
53ad38e
4779b69
53ad38e
4779b69
53ad38e
4779b69
53ad38e
4779b69
 
 
 
 
53ad38e
4779b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ad38e
4779b69
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
library_name: transformers
license: apache-2.0
base_model: axolotl-ai-co/gpt-oss-20b-dequantized
tags:
- generated_from_trainer
datasets:
- HuggingFaceH4/Multilingual-Thinking
model-index:
- name: outputs/gpt-oss-20b/
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.12.0`
```yaml
# the original mxfp4 quantized model is not supported with FSDP cpu_ram_efficient_loading
# FSDP cpu_ram_efficient_loading is used to reduce the initial CPU memory usage when loading the model
base_model: axolotl-ai-co/gpt-oss-20b-dequantized

use_kernels: false

dp_shard_size: 8  # requires 2x8xH100 nodes

plugins:
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin

experimental_skip_move_to_device: true  # prevent OOM by NOT putting model to GPU before sharding

datasets:
  - path: HuggingFaceH4/Multilingual-Thinking
    type: chat_template
    field_thinking: thinking
    template_thinking_key: thinking

dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./outputs/gpt-oss-20b/
#save_only_model: true

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project: gpt-oss-20b
wandb_name: fft-20b

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1

optimizer: adamw_torch_fused  # 8bit optimizers do not work with FSDP2 offload
lr_scheduler: constant_with_warmup
learning_rate: 2e-5
load_best_model_at_end: false

bf16: true
tf32: true

flash_attention: true
attn_implementation: kernels-community/vllm-flash-attn3

gradient_checkpointing: true
activation_offloading: true

logging_steps: 1
saves_per_epoch: 1

warmup_ratio: 0.03

special_tokens:
eot_tokens:
  - "<|end|>"

#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
fsdp_version: 2
fsdp_config:
  offload_params: true
  state_dict_type: SHARDED_STATE_DICT
  auto_wrap_policy: TRANSFORMER_BASED_WRAP
  transformer_layer_cls_to_wrap: GptOssDecoderLayer
  reshard_after_forward: true
  cpu_ram_efficient_loading: true
```

</details><br>

# outputs/gpt-oss-20b/

This model is a fine-tuned version of [axolotl-ai-co/gpt-oss-20b-dequantized](https://huggingface.co/axolotl-ai-co/gpt-oss-20b-dequantized) on the HuggingFaceH4/Multilingual-Thinking dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- training_steps: 8

### Training results



### Framework versions

- Transformers 4.55.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4