--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit library_name: peft --- # Qwen2.5-3B-Instruct with LoRA Adapter This model is a fine-tuned version of the `unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit` using Parameter-Efficient Fine-Tuning (PEFT) with the LoRA method. ## Model Details ### Model Description This model applies LoRA (Low-Rank Adaptation) to the Qwen2.5-3B-Instruct base model, targeting key projection modules for efficient fine-tuning. It is quantized to 4-bit precision using the Unsloth library to optimize for inference performance on lower-resource hardware. - **Developed by:** [montebello.ai](https://www.montebello.ai/) - **Funded by:** Bootstrapped 4 Life - **Model type:** Causal Language Model with LoRA Adapter - **Language(s) (NLP):** English (primary), multilingual support for some other languages (research ongoing). - **License:** MIT - **Finetuned from model:** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit ### Model Sources - **Demo [optional]:** [COMING SOON] ## Uses ### Direct Use This model is designed for natural language understanding and generation tasks, including: - Conversational AI - Summarization - Text completion - Question answering ### Downstream Use Fine-tuning the model for specific NLP tasks, such as custom domain conversational agents. ### Out-of-Scope Use - Real-time critical systems requiring guaranteed safety and accuracy. - Generating content for sensitive domains without human oversight. ## Bias, Risks, and Limitations - The base model may contain biases present in the original training data. - The model is not fine-tuned for safety-critical applications. - Limitations include possible hallucinations in generative outputs and language biases. ### Recommendations - Perform task-specific evaluations before deploying the model. - Include human-in-the-loop for critical applications. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained("unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit") base_model = AutoModelForCausalLM.from_pretrained("unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "path_to_your_adapter") # Example inference input_text = "Your input text here." inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` ## Training Details ### Training Procedure - **Preprocessing:** Tokenization with AutoTokenizer. - **Training regime:** bf16 mixed precision with LoRA fine-tuning. - **LoRA Configuration:** - `lora_alpha`: 64 - `r`: 64 - `target_modules`: ['v_proj', 'o_proj', 'up_proj', 'gate_proj', 'down_proj', 'q_proj', 'k_proj'] - `bias`: none ### Training Data This model was trained on the [GSM8K dataset](https://github.com/openai/grade-school-math) from OpenAI. ## Environmental Impact - **Hardware Type:** T4 TPU - **Hours used:** 2.5 hours ## Technical Specifications ### Model Architecture and Objective - Transformer-based causal language model using LoRA for efficient adaptation. ### Compute Infrastructure - **Hardware:** [Specify GPU/CPU setup] - **Software:** - Python 3.x - Transformers library - PEFT 0.14.0 ## Citation [optional] **BibTeX:** ``` @misc{your2025model, title={Qwen2.5-3B-Instruct with LoRA Adapter}, author={Kenneth Hamilton}, year={2025} } ``` **APA:** Your Name. (2025). *Qwen2.5-3B-Instruct with LoRA Adapter*. Retrieved from Your repository link. ## Model Card Contact - **Contact:** [Your contact information] ### Framework versions - PEFT 0.14.0