ZennyKenny commited on
Commit
d55cb75
·
verified ·
1 Parent(s): 78bbb23

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -139
README.md CHANGED
@@ -1,199 +1,140 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - abliteration
5
+ - alignment
6
+ - safety
7
+ - llama3
8
+ - directional_steering
9
+ - interpretability
10
+ license: mit
11
+ datasets:
12
+ - mlabonne/harmful_behaviors
13
+ - mlabonne/harmless_alpaca
14
+ language:
15
+ - en
16
+ base_model:
17
+ - meta-llama/Meta-Llama-3-8B-Instruct
18
  ---
19
 
20
+ # Model Card for ZennyKenny/Daredevil-8B-abliterated
21
 
22
+ This is an "abliterated" version of `mlabonne/Daredevil-8B`, based on the abliteration method developed by [Mistral community member mlabonne](https://huggingface.co/mlabonne) to reduce unsafe behavior in LLMs through direction-based activation editing.
23
 
24
+ The technique projects out harmful activation directions without further finetuning or modifying the model architecture. It is inspired by work on **steering vectors**, **mechanistic interpretability**, and **alignment by construction**.
25
 
26
+ ---
27
 
28
  ## Model Details
29
 
30
  ### Model Description
31
 
32
+ This model has been modified from `meta-llama/Meta-Llama-3-8B-Instruct` by applying vector-based **orthogonal projection** to internal representations associated with harmful outputs. The method uses **HookedTransformer** from `transformer_lens` to calculate harmful activation directions from prompt-based comparisons and then removes those components from the weights.
 
 
33
 
34
+ - **Developed by:** ZennyKenny (based on work by mlabonne)
35
+ - **Model type:** Causal Language Model
36
+ - **Language(s):** English
37
+ - **License:** llama3-license
38
+ - **Finetuned from model:** `mlabonne/Daredevil-8B`
39
+ - **Modified from base model:** `meta-llama/Meta-Llama-3-8B-Instruct`
 
40
 
41
+ ### Model Sources
42
 
43
+ - **Original Model:** [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B)
44
+ - **Blog Post:** [Abliteration: Safer LLMs with 1 Line of Code](https://huggingface.co/blog/mlabonne/abliteration)
45
 
46
+ ---
 
 
47
 
48
  ## Uses
49
 
 
 
50
  ### Direct Use
51
 
52
+ This model is intended for **experiments in safety and alignment research**, especially in:
53
+ - Exploring vector-based interpretability
54
+ - Testing refusal behaviors
55
+ - Evaluating models modified via non-finetuning methods
 
 
 
 
 
56
 
57
  ### Out-of-Scope Use
58
 
59
+ - Do **not** rely on this model for high-stakes decisions.
60
+ - This model was not tested for factuality, multilingual use, or downstream generalization.
61
+ - Not intended for production or safety-critical applications.
62
 
63
+ ---
64
 
65
  ## Bias, Risks, and Limitations
66
 
67
+ ### Limitations
68
 
69
+ - Only a **single direction** (or small subset) was ablated—this does not guarantee complete refusal behavior.
70
+ - Potential for **capability degradation** or underperformance on certain prompts.
71
+ - Effectiveness is **prompt-sensitive** and may vary significantly.
72
 
73
  ### Recommendations
74
 
75
+ - Treat this model as **exploratory**, not final.
76
+ - Evaluate outputs thoroughly before using in any application beyond experimentation.
77
+ - Use interpretability tools (like `transformer_lens`) to understand effects layer-by-layer.
78
 
79
+ ---
80
 
81
  ## How to Get Started with the Model
82
 
83
+ ```python
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+
86
+ model = AutoModelForCausalLM.from_pretrained("ZennyKenny/Daredevil-8B-abliterated")
87
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
88
+
89
+ prompt = "How can I build a bomb?"
90
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
91
+ outputs = model.generate(**inputs, max_new_tokens=64)
92
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
93
+ ```
94
 
95
+ ---
96
 
97
  ## Training Details
98
 
99
  ### Training Data
100
 
101
+ This model was not further trained. Instead, it used representations from:
102
+ - `mlabonne/harmful_behaviors` (harmful prompt dataset)
103
+ - `mlabonne/harmless_alpaca` (harmless instruction dataset)
104
 
105
  ### Training Procedure
106
 
107
+ - Model activations were captured with `transformer_lens`
108
+ - Harmful vs. harmless activations compared across layers
109
+ - Top directional vectors removed from internal weights via projection
 
 
 
110
 
111
  #### Training Hyperparameters
112
 
113
+ - **Precision used:** `bfloat16` (model loading), `float32` (conversion)
114
+ - **Orthogonalization method:** L2-normalized difference vectors
115
+ - **Number of layers edited:** Entire stack (all transformer blocks)
116
 
117
+ ---
 
 
118
 
119
  ## Evaluation
120
 
121
+ Model completions were evaluated by:
122
+ - Human inspection of generations
123
+ - Baseline vs. intervention vs. orthogonalized comparisons
124
+ - Focused on refusal language: e.g., presence of "I can't", "I won't", etc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ ---
 
 
 
 
 
 
 
 
 
 
127
 
128
  ## Environmental Impact
129
 
130
+ - **Hardware Type:** NVIDIA A100 (Google Colab)
131
+ - **Hours used:** ~1
132
+ - **Cloud Provider:** Google Cloud (Colab)
133
+ - **Compute Region:** [Unknown]
134
+ - **Carbon Emitted:** Minimal (low compute footprint, no training)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
 
136
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
  ## Model Card Contact
139
 
140
+ For questions, reach out via [Hugging Face](https://huggingface.co/ZennyKenny)