--- tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: prices:What is even better, is that the prices are very affordable as well, and the food is really good. - text: 'soups:An oasis of refinement: Food, though somewhat uneven, often reaches the pinnacles of new American fine cuisine - chef''s passion (and kitchen''s precise execution) is most evident in the fish dishes and soups.' - text: lobster sandwich:We had the lobster sandwich and it was FANTASTIC. - text: captain:I understand the area and folks you need not come here for the romantic, alluring ambiance or the five star service featuring a sommlier and a complicated maze of captain and back waiters - you come for the authentic foods, the tastes, the experiance. - text: dining experience:The entire dining experience was wonderful! metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: false base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8502202643171806 name: Accuracy --- # SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_sm - **SetFitABSA Aspect Model:** [ZeaNL/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/ZeaNL/setfit-absa-bge-small-en-v1.5-restaurants-aspect) - **SetFitABSA Polarity Model:** [ZeaNL/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/ZeaNL/setfit-absa-bge-small-en-v1.5-restaurants-polarity) - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8502 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "ZeaNL/setfit-absa-bge-small-en-v1.5-restaurants-aspect", "ZeaNL/setfit-absa-bge-small-en-v1.5-restaurants-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 17.915 | 37 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 72 | | aspect | 128 | ### Training Hyperparameters - batch_size: (128, 128) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0058 | 1 | 0.2746 | - | | 0.2924 | 50 | 0.2771 | 0.2563 | | 0.5848 | 100 | 0.1821 | 0.2233 | | 0.8772 | 150 | 0.0216 | 0.2231 | | 1.1696 | 200 | 0.0028 | 0.2303 | | 1.4620 | 250 | 0.0017 | 0.2352 | | 1.7544 | 300 | 0.0011 | 0.2370 | | 2.0468 | 350 | 0.0009 | 0.2363 | | 2.3392 | 400 | 0.0005 | 0.2356 | ### Framework Versions - Python: 3.11.12 - SetFit: 1.1.2 - Sentence Transformers: 3.4.1 - spaCy: 3.7.5 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```