File size: 2,582 Bytes
d09adb5
 
 
 
 
 
 
 
 
f8cb72a
580bcb8
d09adb5
 
 
 
 
4cab368
d09adb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: pysentimiento/robertuito-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: Robertuito-check-worthy-classifier
  results: []
widget: 
- text: "¿Es injusto que una persona que tenga UN MILLÓN DE EUROS en patrimonio pague 298 euros al año? Justicia fiscal es el camino para la justicia social /❤️ https://t.co/HRO5HRmceV"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Robertuito-check-worthy-classifier

This model is a fine-tuned version of [pysentimiento/robertuito-base-uncased](https://huggingface.co/pysentimiento/robertuito-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2029
- F1 Class 0: 0.9557
- F1 Class 1: 0.6936
- F1: 0.8246

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 200
- training_steps: 2000

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1 Class 0 | F1 Class 1 | F1     |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:----------:|:------:|
| 0.4326        | 0.16  | 200  | 0.3187          | 0.9412     | 0.6514     | 0.7963 |
| 0.3765        | 0.32  | 400  | 0.2572          | 0.9323     | 0.6736     | 0.8030 |
| 0.3523        | 0.48  | 600  | 0.2079          | 0.9527     | 0.6990     | 0.8259 |
| 0.3594        | 0.64  | 800  | 0.2184          | 0.9505     | 0.5761     | 0.7633 |
| 0.3307        | 0.8   | 1000 | 0.2109          | 0.9497     | 0.6892     | 0.8194 |
| 0.3166        | 0.96  | 1200 | 0.2187          | 0.9537     | 0.6288     | 0.7912 |
| 0.297         | 1.13  | 1400 | 0.2541          | 0.9524     | 0.6429     | 0.7976 |
| 0.2766        | 1.29  | 1600 | 0.2031          | 0.9561     | 0.7173     | 0.8367 |
| 0.2628        | 1.45  | 1800 | 0.2076          | 0.9516     | 0.7200     | 0.8358 |
| 0.2313        | 1.61  | 2000 | 0.2029          | 0.9557     | 0.6936     | 0.8246 |


### Framework versions

- Transformers 4.35.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1