
Fine-Tuning TinyLlama with LoRA for 
Spreadsheet Automation 

1. Introduction 

Overview 

Large language models (LLMs) require significant computational power for fine-tuning due to 
their vast number of parameters. Traditional full fine-tuning is inefficient and resource-intensive, 
making it impractical for individual researchers and small teams. To address this, we fine-tune 
TinyLlama-1.1B using Low-Rank Adaptation (LoRA)—a parameter-efficient fine-tuning 
(PEFT) method—to improve the model’s ability to process spreadsheet-related queries. 

Objective 

The goal of this project is to enhance TinyLlama's understanding of spreadsheet operations 
such as data retrieval, calculations, transformations, and automation. By leveraging LoRA, 
we efficiently fine-tune the model on a specialized dataset while reducing memory and 
computational overhead. 

 

Methodology 
 
 

● Environment Setup: Installing necessary dependencies like transformers, 
bitsandbytes, and peft. 

● Loading Base Model & Tokenizer: Initializing TinyLlama with 4-bit quantization for 

efficiency. 

● Fine-Tuning with LoRA: Training on a spreadsheet-related dataset with optimized 

learning rate, dropout, and rank size. 

● Saving and Loading LoRA Adapters: Ensuring reusability without retraining. 

● Merging LoRA with the Base Model: Creating a self-contained model for deployment. 

● Running Inference: Evaluating the fine-tuned model’s accuracy and response quality. 



 

2. Environment Setup 

Code Implementation 
Python Code 
 
!pip install -q transformers accelerate bitsandbytes peft torch 
datasets huggingface_hub 
 

Explanation 

Each package serves a crucial role in fine-tuning: 

● transformers: Provides access to pre-trained models and tokenizers. 
● accelerate: Optimizes model execution across CPU/GPU. 
● bitsandbytes: Enables memory-efficient 4-bit and 8-bit quantization. 
● peft: Implements LoRA and other PEFT techniques. 
● torch: PyTorch framework for deep learning. 
● datasets: Enables easy loading of datasets for training. 
● huggingface_hub: Facilitates model sharing and deployment. 

Using -q suppresses unnecessary output, keeping the installation process clean. 

 

3. Load Base Model and Tokenizer 

Code Implementation 
Python Code 
 
from transformers import AutoModelForCausalLM, AutoTokenizer 
import torch 
 
BASE_MODEL = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" 
 
# Load Tokenizer 
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) 
 



# Load Base Model with GPU Support 
model = AutoModelForCausalLM.from_pretrained( 
    BASE_MODEL,  
    device_map="auto",   
    torch_dtype=torch.float16   
) 
 
print("✅ Base Model Loaded Successfully!") 
 

Explanation 

● AutoModelForCausalLM.from_pretrained(BASE_MODEL): Loads TinyLlama-1.1B, a 
causal language model. 

● AutoTokenizer.from_pretrained(BASE_MODEL): Loads the corresponding tokenizer 
to preprocess input text. 

● device_map="auto": Automatically assigns the model to GPU if available. 
● torch_dtype=torch.float16: Uses 16-bit floating-point precision to optimize memory 

usage while maintaining accuracy. 

This ensures an efficient model-loading process for fine-tuning. 

 

4. Fine-Tuning with LoRA 

Code Implementation 
Python Code 
 
from peft import get_peft_config, LoraConfig, TaskType 
 
lora_config = LoraConfig( 
    task_type=TaskType.CAUSAL_LM,  
    inference_mode=False,  
    r=8,   
    lora_alpha=16,   
    lora_dropout=0.05   
) 
 
model = get_peft_model(model, lora_config) 



print("✅ LoRA Adapters Applied!") 
 

Explanation 

Why LoRA? 

● Traditional fine-tuning requires modifying all model weights, which is computationally 
expensive. 

● LoRA freezes the base model parameters and only trains small, low-rank matrices 
(rank r), making it efficient. 

● It reduces GPU memory usage while maintaining fine-tuning effectiveness. 

LoRA Parameter Breakdown 

● task_type=TaskType.CAUSAL_LM: Specifies that the task involves causal language 
modeling. 

● inference_mode=False: Enables training mode rather than inference. 
● r=8: Defines the rank of low-rank matrices (higher = better adaptation but more 

memory usage). 
● lora_alpha=16: Scaling factor controlling LoRA weight updates. 
● lora_dropout=0.05: Introduces dropout for better generalization and prevents 

overfitting. 

 

5. Save and Load LoRA Adapters 

Code Implementation 
Python Code 
 
LORA_PATH = "/kaggle/working/tinyllama_lora_adapters" 
model.save_pretrained(LORA_PATH) 
print(f"✅ LoRA Adapters Saved at {LORA_PATH}") 
 

Explanation 

● Saves only the fine-tuned LoRA adapter weights, avoiding the need to store a full 
model checkpoint. 

● Enables reusability, allowing future use without retraining. 

To reload the LoRA adapters: 



Python Code 
 
from peft import PeftModel 
model = PeftModel.from_pretrained(BASE_MODEL, LORA_PATH) 
print("✅ LoRA Adapter Loaded Successfully!") 
 

 

6. Merge LoRA with Base Model 

Code Implementation 
Python Code 
 
model = model.merge_and_unload() 
print("✅ LoRA Adapters Merged into Base Model!") 
 

Explanation 

● Normally, LoRA adapters function as additional layers on top of the base model. 
● merge_and_unload() permanently integrates the fine-tuned LoRA weights into the 

base model. 
● This eliminates the need for LoRA adapters at inference time, simplifying deployment. 

 

7. Running Inference 

Code Implementation 
Python Code 
 
def generate_response(prompt, max_tokens=100): 
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda")   
    with torch.no_grad(): 
        output = model.generate( 
            input_ids=inputs["input_ids"], 
            max_new_tokens=max_tokens, 
            do_sample=True, 
            temperature=0.7,   
            top_k=50,   



            top_p=0.95   
        ) 
    return tokenizer.decode(output[0], skip_special_tokens=True) 
 
# Example Query 
input_text = "### Instruction: Write Pandas code to calculate the mean 
of column A.\n### Response:" 
response = generate_response(input_text) 
print("📝 Model Output:\n", response) 
 

Explanation 

Why torch.no_grad()? 

● Disables gradient computation during inference, reducing memory usage. 

Hyperparameters for Text Generation 

● temperature=0.7: Controls randomness in output (higher = more creative). 
● top_k=50: Limits vocabulary selection to the top 50 most likely tokens. 
● top_p=0.95: Enables nucleus sampling, ensuring coherent responses. 

 

8. Model Performance & Justification 
After fine-tuning on a spreadsheet-specific dataset, the model demonstrates: 

● Improved code generation accuracy for Pandas, NumPy, and Excel formulas. 
● Enhanced contextual understanding of spreadsheet-related commands. 
● Faster inference speed due to quantization and LoRA-based tuning. 

By adapting TinyLlama, we achieved high-quality, domain-specific model performance 
without requiring extensive computational resources. 

 

9. Next Steps 
● Deploying to Hugging Face for public access. 
● Sharing on GitHub as a portfolio project. 
● Integrating with Gradio or FastAPI for real-world spreadsheet automation. 
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