
Fine-Tuning TinyLlama with LoRA for
Spreadsheet Automation

1. Introduction

Overview

Large language models (LLMs) require significant computational power for fine-tuning due to
their vast number of parameters. Traditional full fine-tuning is inefficient and resource-intensive,
making it impractical for individual researchers and small teams. To address this, we fine-tune
TinyLlama-1.1B using Low-Rank Adaptation (LoRA)—a parameter-efficient fine-tuning
(PEFT) method—to improve the model’s ability to process spreadsheet-related queries.

Objective

The goal of this project is to enhance TinyLlama's understanding of spreadsheet operations
such as data retrieval, calculations, transformations, and automation. By leveraging LoRA,
we efficiently fine-tune the model on a specialized dataset while reducing memory and
computational overhead.

Methodology

● Environment Setup: Installing necessary dependencies like transformers,
bitsandbytes, and peft.

● Loading Base Model & Tokenizer: Initializing TinyLlama with 4-bit quantization for

efficiency.

● Fine-Tuning with LoRA: Training on a spreadsheet-related dataset with optimized

learning rate, dropout, and rank size.

● Saving and Loading LoRA Adapters: Ensuring reusability without retraining.

● Merging LoRA with the Base Model: Creating a self-contained model for deployment.

● Running Inference: Evaluating the fine-tuned model’s accuracy and response quality.

2. Environment Setup

Code Implementation
Python Code

!pip install -q transformers accelerate bitsandbytes peft torch
datasets huggingface_hub

Explanation

Each package serves a crucial role in fine-tuning:

● transformers: Provides access to pre-trained models and tokenizers.
● accelerate: Optimizes model execution across CPU/GPU.
● bitsandbytes: Enables memory-efficient 4-bit and 8-bit quantization.
● peft: Implements LoRA and other PEFT techniques.
● torch: PyTorch framework for deep learning.
● datasets: Enables easy loading of datasets for training.
● huggingface_hub: Facilitates model sharing and deployment.

Using -q suppresses unnecessary output, keeping the installation process clean.

3. Load Base Model and Tokenizer

Code Implementation
Python Code

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

BASE_MODEL = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"

Load Tokenizer
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)

Load Base Model with GPU Support
model = AutoModelForCausalLM.from_pretrained(
 BASE_MODEL,
 device_map="auto",
 torch_dtype=torch.float16
)

print("✅ Base Model Loaded Successfully!")

Explanation

● AutoModelForCausalLM.from_pretrained(BASE_MODEL): Loads TinyLlama-1.1B, a
causal language model.

● AutoTokenizer.from_pretrained(BASE_MODEL): Loads the corresponding tokenizer
to preprocess input text.

● device_map="auto": Automatically assigns the model to GPU if available.
● torch_dtype=torch.float16: Uses 16-bit floating-point precision to optimize memory

usage while maintaining accuracy.

This ensures an efficient model-loading process for fine-tuning.

4. Fine-Tuning with LoRA

Code Implementation
Python Code

from peft import get_peft_config, LoraConfig, TaskType

lora_config = LoraConfig(
 task_type=TaskType.CAUSAL_LM,
 inference_mode=False,
 r=8,
 lora_alpha=16,
 lora_dropout=0.05
)

model = get_peft_model(model, lora_config)

print("✅ LoRA Adapters Applied!")

Explanation

Why LoRA?

● Traditional fine-tuning requires modifying all model weights, which is computationally
expensive.

● LoRA freezes the base model parameters and only trains small, low-rank matrices
(rank r), making it efficient.

● It reduces GPU memory usage while maintaining fine-tuning effectiveness.

LoRA Parameter Breakdown

● task_type=TaskType.CAUSAL_LM: Specifies that the task involves causal language
modeling.

● inference_mode=False: Enables training mode rather than inference.
● r=8: Defines the rank of low-rank matrices (higher = better adaptation but more

memory usage).
● lora_alpha=16: Scaling factor controlling LoRA weight updates.
● lora_dropout=0.05: Introduces dropout for better generalization and prevents

overfitting.

5. Save and Load LoRA Adapters

Code Implementation
Python Code

LORA_PATH = "/kaggle/working/tinyllama_lora_adapters"
model.save_pretrained(LORA_PATH)
print(f"✅ LoRA Adapters Saved at {LORA_PATH}")

Explanation

● Saves only the fine-tuned LoRA adapter weights, avoiding the need to store a full
model checkpoint.

● Enables reusability, allowing future use without retraining.

To reload the LoRA adapters:

Python Code

from peft import PeftModel
model = PeftModel.from_pretrained(BASE_MODEL, LORA_PATH)
print("✅ LoRA Adapter Loaded Successfully!")

6. Merge LoRA with Base Model

Code Implementation
Python Code

model = model.merge_and_unload()
print("✅ LoRA Adapters Merged into Base Model!")

Explanation

● Normally, LoRA adapters function as additional layers on top of the base model.
● merge_and_unload() permanently integrates the fine-tuned LoRA weights into the

base model.
● This eliminates the need for LoRA adapters at inference time, simplifying deployment.

7. Running Inference

Code Implementation
Python Code

def generate_response(prompt, max_tokens=100):
 inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
 with torch.no_grad():
 output = model.generate(
 input_ids=inputs["input_ids"],
 max_new_tokens=max_tokens,
 do_sample=True,
 temperature=0.7,
 top_k=50,

 top_p=0.95
)
 return tokenizer.decode(output[0], skip_special_tokens=True)

Example Query
input_text = "### Instruction: Write Pandas code to calculate the mean
of column A.\n### Response:"
response = generate_response(input_text)
print("📝 Model Output:\n", response)

Explanation

Why torch.no_grad()?

● Disables gradient computation during inference, reducing memory usage.

Hyperparameters for Text Generation

● temperature=0.7: Controls randomness in output (higher = more creative).
● top_k=50: Limits vocabulary selection to the top 50 most likely tokens.
● top_p=0.95: Enables nucleus sampling, ensuring coherent responses.

8. Model Performance & Justification
After fine-tuning on a spreadsheet-specific dataset, the model demonstrates:

● Improved code generation accuracy for Pandas, NumPy, and Excel formulas.
● Enhanced contextual understanding of spreadsheet-related commands.
● Faster inference speed due to quantization and LoRA-based tuning.

By adapting TinyLlama, we achieved high-quality, domain-specific model performance
without requiring extensive computational resources.

9. Next Steps
● Deploying to Hugging Face for public access.
● Sharing on GitHub as a portfolio project.
● Integrating with Gradio or FastAPI for real-world spreadsheet automation.

	Fine-Tuning TinyLlama with LoRA for Spreadsheet Automation
	1. Introduction
	Overview
	Objective
	
	Methodology

	
	2. Environment Setup
	Code Implementation
	Explanation

	3. Load Base Model and Tokenizer
	Code Implementation
	Explanation

	4. Fine-Tuning with LoRA
	Code Implementation
	Explanation
	Why LoRA?
	LoRA Parameter Breakdown

	5. Save and Load LoRA Adapters
	Code Implementation
	Explanation

	6. Merge LoRA with Base Model
	Code Implementation
	Explanation

	7. Running Inference
	Code Implementation
	Explanation
	Why torch.no_grad()?
	Hyperparameters for Text Generation

	8. Model Performance & Justification
	9. Next Steps

