Zacktree commited on
Commit
5ec2546
·
verified ·
1 Parent(s): 8ac5d15

Model save

Browse files
README.md CHANGED
@@ -18,7 +18,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [google/codegemma-7b](https://huggingface.co/google/codegemma-7b) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.0663
22
 
23
  ## Model description
24
 
@@ -47,127 +47,239 @@ The following hyperparameters were used during training:
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: cosine
49
  - lr_scheduler_warmup_ratio: 0.03
50
- - num_epochs: 5
51
  - mixed_precision_training: Native AMP
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss |
56
- |:-------------:|:------:|:----:|:---------------:|
57
- | 0.7003 | 0.0530 | 50 | 0.6702 |
58
- | 0.5467 | 0.1061 | 100 | 0.5399 |
59
- | 0.4662 | 0.1591 | 150 | 0.4138 |
60
- | 0.3608 | 0.2121 | 200 | 0.3042 |
61
- | 0.3032 | 0.2652 | 250 | 0.2450 |
62
- | 0.2313 | 0.3182 | 300 | 0.2067 |
63
- | 0.1953 | 0.3713 | 350 | 0.1729 |
64
- | 0.1701 | 0.4243 | 400 | 0.1495 |
65
- | 0.1593 | 0.4773 | 450 | 0.1382 |
66
- | 0.1491 | 0.5304 | 500 | 0.1334 |
67
- | 0.1668 | 0.5834 | 550 | 0.1282 |
68
- | 0.1433 | 0.6364 | 600 | 0.1259 |
69
- | 0.1457 | 0.6895 | 650 | 0.1241 |
70
- | 0.1476 | 0.7425 | 700 | 0.1215 |
71
- | 0.139 | 0.7955 | 750 | 0.1176 |
72
- | 0.1209 | 0.8486 | 800 | 0.1159 |
73
- | 0.1365 | 0.9016 | 850 | 0.1148 |
74
- | 0.1239 | 0.9547 | 900 | 0.1157 |
75
- | 0.116 | 1.0077 | 950 | 0.1097 |
76
- | 0.1145 | 1.0607 | 1000 | 0.1104 |
77
- | 0.1187 | 1.1146 | 1050 | 0.1067 |
78
- | 0.117 | 1.1676 | 1100 | 0.1069 |
79
- | 0.1219 | 1.2206 | 1150 | 0.1059 |
80
- | 0.1192 | 1.2737 | 1200 | 0.1052 |
81
- | 0.1296 | 1.3267 | 1250 | 0.1023 |
82
- | 0.1016 | 1.3797 | 1300 | 0.1016 |
83
- | 0.1051 | 1.4328 | 1350 | 0.1011 |
84
- | 0.1207 | 1.4858 | 1400 | 0.1016 |
85
- | 0.1132 | 1.5388 | 1450 | 0.1031 |
86
- | 0.1143 | 1.5919 | 1500 | 0.0997 |
87
- | 0.1089 | 1.6449 | 1550 | 0.0988 |
88
- | 0.1164 | 1.6980 | 1600 | 0.0966 |
89
- | 0.1092 | 1.7510 | 1650 | 0.0961 |
90
- | 0.1056 | 1.8040 | 1700 | 0.0957 |
91
- | 0.1072 | 1.8571 | 1750 | 0.0948 |
92
- | 0.1029 | 1.9101 | 1800 | 0.0942 |
93
- | 0.1117 | 1.9631 | 1850 | 0.0931 |
94
- | 0.1126 | 2.0162 | 1900 | 0.0931 |
95
- | 0.104 | 2.0700 | 1950 | 0.0944 |
96
- | 0.1094 | 2.1230 | 2000 | 0.0925 |
97
- | 0.1044 | 2.1761 | 2050 | 0.0944 |
98
- | 0.0981 | 2.2291 | 2100 | 0.0926 |
99
- | 0.1031 | 2.2822 | 2150 | 0.0915 |
100
- | 0.0933 | 2.3352 | 2200 | 0.0919 |
101
- | 0.1085 | 2.3882 | 2250 | 0.0917 |
102
- | 0.1106 | 2.4413 | 2300 | 0.0905 |
103
- | 0.0988 | 2.4943 | 2350 | 0.0897 |
104
- | 0.0909 | 2.5473 | 2400 | 0.0883 |
105
- | 0.1025 | 2.6004 | 2450 | 0.0874 |
106
- | 0.1016 | 2.6534 | 2500 | 0.0873 |
107
- | 0.0927 | 2.7064 | 2550 | 0.0860 |
108
- | 0.0942 | 2.7595 | 2600 | 0.0854 |
109
- | 0.0888 | 2.8125 | 2650 | 0.0859 |
110
- | 0.091 | 2.8656 | 2700 | 0.0851 |
111
- | 0.0922 | 2.9186 | 2750 | 0.0855 |
112
- | 0.0949 | 2.9716 | 2800 | 0.0839 |
113
- | 0.0855 | 3.0247 | 2850 | 0.0841 |
114
- | 0.0955 | 3.0777 | 2900 | 0.0831 |
115
- | 0.0831 | 3.1307 | 2950 | 0.0817 |
116
- | 0.0843 | 3.1838 | 3000 | 0.0814 |
117
- | 0.0756 | 3.2368 | 3050 | 0.0812 |
118
- | 0.0893 | 3.2898 | 3100 | 0.0806 |
119
- | 0.0787 | 3.3429 | 3150 | 0.0827 |
120
- | 0.0842 | 3.3959 | 3200 | 0.0790 |
121
- | 0.079 | 3.4490 | 3250 | 0.0791 |
122
- | 0.0797 | 3.5020 | 3300 | 0.0773 |
123
- | 0.0774 | 3.5550 | 3350 | 0.0777 |
124
- | 0.0751 | 3.6081 | 3400 | 0.0779 |
125
- | 0.079 | 3.6611 | 3450 | 0.0781 |
126
- | 0.0849 | 3.7141 | 3500 | 0.0762 |
127
- | 0.0852 | 3.7672 | 3550 | 0.0759 |
128
- | 0.0742 | 3.8202 | 3600 | 0.0770 |
129
- | 0.0719 | 3.8732 | 3650 | 0.0755 |
130
- | 0.07 | 3.9263 | 3700 | 0.0757 |
131
- | 0.0778 | 3.9793 | 3750 | 0.0759 |
132
- | 0.0792 | 4.0324 | 3800 | 0.0751 |
133
- | 0.0705 | 4.0854 | 3850 | 0.0745 |
134
- | 0.0679 | 4.1384 | 3900 | 0.0741 |
135
- | 0.0619 | 4.1915 | 3950 | 0.0734 |
136
- | 0.0689 | 4.2445 | 4000 | 0.0731 |
137
- | 0.0653 | 4.2975 | 4050 | 0.0732 |
138
- | 0.0678 | 4.3506 | 4100 | 0.0733 |
139
- | 0.07 | 4.4036 | 4150 | 0.0719 |
140
- | 0.0656 | 4.4566 | 4200 | 0.0739 |
141
- | 0.062 | 4.5097 | 4250 | 0.0732 |
142
- | 0.0676 | 4.5627 | 4300 | 0.0718 |
143
- | 0.0668 | 4.6158 | 4350 | 0.0722 |
144
- | 0.0701 | 4.6688 | 4400 | 0.0718 |
145
- | 0.067 | 4.7218 | 4450 | 0.0709 |
146
- | 0.0686 | 4.7749 | 4500 | 0.0722 |
147
- | 0.0649 | 4.8279 | 4550 | 0.0751 |
148
- | 0.0711 | 4.8809 | 4600 | 0.0708 |
149
- | 0.0747 | 4.9340 | 4650 | 0.0711 |
150
- | 0.0622 | 4.9870 | 4700 | 0.0700 |
151
- | 0.0634 | 5.0400 | 4750 | 0.0695 |
152
- | 0.0714 | 5.0931 | 4800 | 0.0756 |
153
- | 0.0615 | 5.1461 | 4850 | 0.0732 |
154
- | 0.0612 | 5.1992 | 4900 | 0.0704 |
155
- | 0.0599 | 5.2522 | 4950 | 0.0686 |
156
- | 0.0567 | 5.3052 | 5000 | 0.0679 |
157
- | 0.0593 | 5.3583 | 5050 | 0.0673 |
158
- | 0.0576 | 5.4113 | 5100 | 0.0675 |
159
- | 0.0628 | 5.4643 | 5150 | 0.0664 |
160
- | 0.0572 | 5.5174 | 5200 | 0.0660 |
161
- | 0.06 | 5.5704 | 5250 | 0.0659 |
162
- | 0.0568 | 5.6234 | 5300 | 0.0660 |
163
- | 0.058 | 5.6765 | 5350 | 0.0656 |
164
- | 0.0559 | 5.7295 | 5400 | 0.0650 |
165
- | 0.0549 | 5.7826 | 5450 | 0.0652 |
166
- | 0.0605 | 5.8356 | 5500 | 0.0649 |
167
- | 0.0539 | 5.8886 | 5550 | 0.0641 |
168
- | 0.0567 | 5.9417 | 5600 | 0.0637 |
169
- | 0.057 | 5.9947 | 5650 | 0.0654 |
170
- | 0.0482 | 6.0477 | 5700 | 0.0663 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
 
173
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [google/codegemma-7b](https://huggingface.co/google/codegemma-7b) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.0475
22
 
23
  ## Model description
24
 
 
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: cosine
49
  - lr_scheduler_warmup_ratio: 0.03
50
+ - num_epochs: 12
51
  - mixed_precision_training: Native AMP
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss |
56
+ |:-------------:|:-------:|:-----:|:---------------:|
57
+ | 0.7003 | 0.0530 | 50 | 0.6702 |
58
+ | 0.5467 | 0.1061 | 100 | 0.5399 |
59
+ | 0.4662 | 0.1591 | 150 | 0.4138 |
60
+ | 0.3608 | 0.2121 | 200 | 0.3042 |
61
+ | 0.3032 | 0.2652 | 250 | 0.2450 |
62
+ | 0.2313 | 0.3182 | 300 | 0.2067 |
63
+ | 0.1953 | 0.3713 | 350 | 0.1729 |
64
+ | 0.1701 | 0.4243 | 400 | 0.1495 |
65
+ | 0.1593 | 0.4773 | 450 | 0.1382 |
66
+ | 0.1491 | 0.5304 | 500 | 0.1334 |
67
+ | 0.1668 | 0.5834 | 550 | 0.1282 |
68
+ | 0.1433 | 0.6364 | 600 | 0.1259 |
69
+ | 0.1457 | 0.6895 | 650 | 0.1241 |
70
+ | 0.1476 | 0.7425 | 700 | 0.1215 |
71
+ | 0.139 | 0.7955 | 750 | 0.1176 |
72
+ | 0.1209 | 0.8486 | 800 | 0.1159 |
73
+ | 0.1365 | 0.9016 | 850 | 0.1148 |
74
+ | 0.1239 | 0.9547 | 900 | 0.1157 |
75
+ | 0.116 | 1.0077 | 950 | 0.1097 |
76
+ | 0.1145 | 1.0607 | 1000 | 0.1104 |
77
+ | 0.1187 | 1.1146 | 1050 | 0.1067 |
78
+ | 0.117 | 1.1676 | 1100 | 0.1069 |
79
+ | 0.1219 | 1.2206 | 1150 | 0.1059 |
80
+ | 0.1192 | 1.2737 | 1200 | 0.1052 |
81
+ | 0.1296 | 1.3267 | 1250 | 0.1023 |
82
+ | 0.1016 | 1.3797 | 1300 | 0.1016 |
83
+ | 0.1051 | 1.4328 | 1350 | 0.1011 |
84
+ | 0.1207 | 1.4858 | 1400 | 0.1016 |
85
+ | 0.1132 | 1.5388 | 1450 | 0.1031 |
86
+ | 0.1143 | 1.5919 | 1500 | 0.0997 |
87
+ | 0.1089 | 1.6449 | 1550 | 0.0988 |
88
+ | 0.1164 | 1.6980 | 1600 | 0.0966 |
89
+ | 0.1092 | 1.7510 | 1650 | 0.0961 |
90
+ | 0.1056 | 1.8040 | 1700 | 0.0957 |
91
+ | 0.1072 | 1.8571 | 1750 | 0.0948 |
92
+ | 0.1029 | 1.9101 | 1800 | 0.0942 |
93
+ | 0.1117 | 1.9631 | 1850 | 0.0931 |
94
+ | 0.1126 | 2.0162 | 1900 | 0.0931 |
95
+ | 0.104 | 2.0700 | 1950 | 0.0944 |
96
+ | 0.1094 | 2.1230 | 2000 | 0.0925 |
97
+ | 0.1044 | 2.1761 | 2050 | 0.0944 |
98
+ | 0.0981 | 2.2291 | 2100 | 0.0926 |
99
+ | 0.1031 | 2.2822 | 2150 | 0.0915 |
100
+ | 0.0933 | 2.3352 | 2200 | 0.0919 |
101
+ | 0.1085 | 2.3882 | 2250 | 0.0917 |
102
+ | 0.1106 | 2.4413 | 2300 | 0.0905 |
103
+ | 0.0988 | 2.4943 | 2350 | 0.0897 |
104
+ | 0.0909 | 2.5473 | 2400 | 0.0883 |
105
+ | 0.1025 | 2.6004 | 2450 | 0.0874 |
106
+ | 0.1016 | 2.6534 | 2500 | 0.0873 |
107
+ | 0.0927 | 2.7064 | 2550 | 0.0860 |
108
+ | 0.0942 | 2.7595 | 2600 | 0.0854 |
109
+ | 0.0888 | 2.8125 | 2650 | 0.0859 |
110
+ | 0.091 | 2.8656 | 2700 | 0.0851 |
111
+ | 0.0922 | 2.9186 | 2750 | 0.0855 |
112
+ | 0.0949 | 2.9716 | 2800 | 0.0839 |
113
+ | 0.0855 | 3.0247 | 2850 | 0.0841 |
114
+ | 0.0955 | 3.0777 | 2900 | 0.0831 |
115
+ | 0.0831 | 3.1307 | 2950 | 0.0817 |
116
+ | 0.0843 | 3.1838 | 3000 | 0.0814 |
117
+ | 0.0756 | 3.2368 | 3050 | 0.0812 |
118
+ | 0.0893 | 3.2898 | 3100 | 0.0806 |
119
+ | 0.0787 | 3.3429 | 3150 | 0.0827 |
120
+ | 0.0842 | 3.3959 | 3200 | 0.0790 |
121
+ | 0.079 | 3.4490 | 3250 | 0.0791 |
122
+ | 0.0797 | 3.5020 | 3300 | 0.0773 |
123
+ | 0.0774 | 3.5550 | 3350 | 0.0777 |
124
+ | 0.0751 | 3.6081 | 3400 | 0.0779 |
125
+ | 0.079 | 3.6611 | 3450 | 0.0781 |
126
+ | 0.0849 | 3.7141 | 3500 | 0.0762 |
127
+ | 0.0852 | 3.7672 | 3550 | 0.0759 |
128
+ | 0.0742 | 3.8202 | 3600 | 0.0770 |
129
+ | 0.0719 | 3.8732 | 3650 | 0.0755 |
130
+ | 0.07 | 3.9263 | 3700 | 0.0757 |
131
+ | 0.0778 | 3.9793 | 3750 | 0.0759 |
132
+ | 0.0792 | 4.0324 | 3800 | 0.0751 |
133
+ | 0.0705 | 4.0854 | 3850 | 0.0745 |
134
+ | 0.0679 | 4.1384 | 3900 | 0.0741 |
135
+ | 0.0619 | 4.1915 | 3950 | 0.0734 |
136
+ | 0.0689 | 4.2445 | 4000 | 0.0731 |
137
+ | 0.0653 | 4.2975 | 4050 | 0.0732 |
138
+ | 0.0678 | 4.3506 | 4100 | 0.0733 |
139
+ | 0.07 | 4.4036 | 4150 | 0.0719 |
140
+ | 0.0656 | 4.4566 | 4200 | 0.0739 |
141
+ | 0.062 | 4.5097 | 4250 | 0.0732 |
142
+ | 0.0676 | 4.5627 | 4300 | 0.0718 |
143
+ | 0.0668 | 4.6158 | 4350 | 0.0722 |
144
+ | 0.0701 | 4.6688 | 4400 | 0.0718 |
145
+ | 0.067 | 4.7218 | 4450 | 0.0709 |
146
+ | 0.0686 | 4.7749 | 4500 | 0.0722 |
147
+ | 0.0649 | 4.8279 | 4550 | 0.0751 |
148
+ | 0.0711 | 4.8809 | 4600 | 0.0708 |
149
+ | 0.0747 | 4.9340 | 4650 | 0.0711 |
150
+ | 0.0622 | 4.9870 | 4700 | 0.0700 |
151
+ | 0.0634 | 5.0400 | 4750 | 0.0695 |
152
+ | 0.0714 | 5.0931 | 4800 | 0.0756 |
153
+ | 0.0615 | 5.1461 | 4850 | 0.0732 |
154
+ | 0.0612 | 5.1992 | 4900 | 0.0704 |
155
+ | 0.0599 | 5.2522 | 4950 | 0.0686 |
156
+ | 0.0567 | 5.3052 | 5000 | 0.0679 |
157
+ | 0.0593 | 5.3583 | 5050 | 0.0673 |
158
+ | 0.0576 | 5.4113 | 5100 | 0.0675 |
159
+ | 0.0628 | 5.4643 | 5150 | 0.0664 |
160
+ | 0.0572 | 5.5174 | 5200 | 0.0660 |
161
+ | 0.06 | 5.5704 | 5250 | 0.0659 |
162
+ | 0.0568 | 5.6234 | 5300 | 0.0660 |
163
+ | 0.058 | 5.6765 | 5350 | 0.0656 |
164
+ | 0.0559 | 5.7295 | 5400 | 0.0650 |
165
+ | 0.0549 | 5.7826 | 5450 | 0.0652 |
166
+ | 0.0605 | 5.8356 | 5500 | 0.0649 |
167
+ | 0.0539 | 5.8886 | 5550 | 0.0641 |
168
+ | 0.0567 | 5.9417 | 5600 | 0.0637 |
169
+ | 0.0627 | 5.9971 | 5650 | 0.0633 |
170
+ | 0.0576 | 6.0501 | 5700 | 0.0635 |
171
+ | 0.0596 | 6.1032 | 5750 | 0.0654 |
172
+ | 0.0751 | 6.1562 | 5800 | 0.0645 |
173
+ | 0.0675 | 6.2092 | 5850 | 0.0636 |
174
+ | 0.0575 | 6.2623 | 5900 | 0.0626 |
175
+ | 0.0618 | 6.3153 | 5950 | 0.0626 |
176
+ | 0.0641 | 6.3683 | 6000 | 0.0632 |
177
+ | 0.0612 | 6.4214 | 6050 | 0.0616 |
178
+ | 0.0599 | 6.4744 | 6100 | 0.0623 |
179
+ | 0.0598 | 6.5274 | 6150 | 0.0607 |
180
+ | 0.0597 | 6.5805 | 6200 | 0.0607 |
181
+ | 0.0595 | 6.6335 | 6250 | 0.0602 |
182
+ | 0.0612 | 6.6866 | 6300 | 0.0591 |
183
+ | 0.058 | 6.7396 | 6350 | 0.0589 |
184
+ | 0.0584 | 6.7926 | 6400 | 0.0580 |
185
+ | 0.0544 | 6.8457 | 6450 | 0.0580 |
186
+ | 0.0563 | 6.8987 | 6500 | 0.0576 |
187
+ | 0.0569 | 6.9517 | 6550 | 0.0568 |
188
+ | 0.0571 | 7.0048 | 6600 | 0.0572 |
189
+ | 0.0463 | 7.0578 | 6650 | 0.0574 |
190
+ | 0.0461 | 7.1108 | 6700 | 0.0570 |
191
+ | 0.0468 | 7.1639 | 6750 | 0.0568 |
192
+ | 0.051 | 7.2169 | 6800 | 0.0564 |
193
+ | 0.0478 | 7.2700 | 6850 | 0.0561 |
194
+ | 0.0487 | 7.3230 | 6900 | 0.0557 |
195
+ | 0.0542 | 7.3760 | 6950 | 0.0563 |
196
+ | 0.0504 | 7.4291 | 7000 | 0.0560 |
197
+ | 0.046 | 7.4821 | 7050 | 0.0550 |
198
+ | 0.0469 | 7.5351 | 7100 | 0.0554 |
199
+ | 0.0473 | 7.5882 | 7150 | 0.0550 |
200
+ | 0.0451 | 7.6412 | 7200 | 0.0548 |
201
+ | 0.0519 | 7.6942 | 7250 | 0.0546 |
202
+ | 0.0522 | 7.7473 | 7300 | 0.0543 |
203
+ | 0.048 | 7.8003 | 7350 | 0.0546 |
204
+ | 0.0519 | 7.8534 | 7400 | 0.0537 |
205
+ | 0.0439 | 7.9064 | 7450 | 0.0537 |
206
+ | 0.0474 | 7.9594 | 7500 | 0.0531 |
207
+ | 0.0456 | 8.0125 | 7550 | 0.0533 |
208
+ | 0.0439 | 8.0655 | 7600 | 0.0533 |
209
+ | 0.0423 | 8.1185 | 7650 | 0.0535 |
210
+ | 0.0405 | 8.1716 | 7700 | 0.0534 |
211
+ | 0.0444 | 8.2246 | 7750 | 0.0539 |
212
+ | 0.0416 | 8.2776 | 7800 | 0.0533 |
213
+ | 0.0433 | 8.3307 | 7850 | 0.0541 |
214
+ | 0.0466 | 8.3837 | 7900 | 0.0522 |
215
+ | 0.047 | 8.4368 | 7950 | 0.0523 |
216
+ | 0.0455 | 8.4898 | 8000 | 0.0528 |
217
+ | 0.0471 | 8.5428 | 8050 | 0.0517 |
218
+ | 0.042 | 8.5959 | 8100 | 0.0517 |
219
+ | 0.0433 | 8.6489 | 8150 | 0.0520 |
220
+ | 0.0488 | 8.7019 | 8200 | 0.0517 |
221
+ | 0.0432 | 8.7550 | 8250 | 0.0521 |
222
+ | 0.0472 | 8.8080 | 8300 | 0.0514 |
223
+ | 0.042 | 8.8610 | 8350 | 0.0511 |
224
+ | 0.0407 | 8.9141 | 8400 | 0.0505 |
225
+ | 0.0415 | 8.9671 | 8450 | 0.0509 |
226
+ | 0.038 | 9.0202 | 8500 | 0.0520 |
227
+ | 0.0408 | 9.0732 | 8550 | 0.0521 |
228
+ | 0.0367 | 9.1262 | 8600 | 0.0520 |
229
+ | 0.0343 | 9.1793 | 8650 | 0.0507 |
230
+ | 0.0379 | 9.2323 | 8700 | 0.0510 |
231
+ | 0.0589 | 9.2853 | 8750 | 0.0554 |
232
+ | 0.0398 | 9.3384 | 8800 | 0.0518 |
233
+ | 0.04 | 9.3914 | 8850 | 0.0514 |
234
+ | 0.0375 | 9.4444 | 8900 | 0.0521 |
235
+ | 0.04 | 9.4975 | 8950 | 0.0503 |
236
+ | 0.0381 | 9.5505 | 9000 | 0.0502 |
237
+ | 0.0386 | 9.6036 | 9050 | 0.0495 |
238
+ | 0.05 | 9.6566 | 9100 | 0.0519 |
239
+ | 0.0389 | 9.7096 | 9150 | 0.0501 |
240
+ | 0.0415 | 9.7627 | 9200 | 0.0499 |
241
+ | 0.038 | 9.8157 | 9250 | 0.0503 |
242
+ | 0.0433 | 9.8687 | 9300 | 0.0498 |
243
+ | 0.036 | 9.9218 | 9350 | 0.0496 |
244
+ | 0.0377 | 9.9748 | 9400 | 0.0488 |
245
+ | 0.038 | 10.0278 | 9450 | 0.0495 |
246
+ | 0.0384 | 10.0809 | 9500 | 0.0501 |
247
+ | 0.035 | 10.1339 | 9550 | 0.0488 |
248
+ | 0.0344 | 10.1870 | 9600 | 0.0484 |
249
+ | 0.0356 | 10.2400 | 9650 | 0.0486 |
250
+ | 0.0341 | 10.2930 | 9700 | 0.0501 |
251
+ | 0.0333 | 10.3461 | 9750 | 0.0495 |
252
+ | 0.0328 | 10.3991 | 9800 | 0.0496 |
253
+ | 0.0337 | 10.4521 | 9850 | 0.0482 |
254
+ | 0.0347 | 10.5052 | 9900 | 0.0489 |
255
+ | 0.0318 | 10.5582 | 9950 | 0.0489 |
256
+ | 0.0307 | 10.6112 | 10000 | 0.0481 |
257
+ | 0.0344 | 10.6643 | 10050 | 0.0482 |
258
+ | 0.0359 | 10.7173 | 10100 | 0.0490 |
259
+ | 0.0325 | 10.7704 | 10150 | 0.0482 |
260
+ | 0.0355 | 10.8234 | 10200 | 0.0495 |
261
+ | 0.0361 | 10.8764 | 10250 | 0.0494 |
262
+ | 0.0368 | 10.9295 | 10300 | 0.0486 |
263
+ | 0.0378 | 10.9825 | 10350 | 0.0475 |
264
+ | 0.0313 | 11.0355 | 10400 | 0.0475 |
265
+ | 0.037 | 11.0886 | 10450 | 0.0473 |
266
+ | 0.0377 | 11.1416 | 10500 | 0.0486 |
267
+ | 0.0282 | 11.1946 | 10550 | 0.0479 |
268
+ | 0.032 | 11.2477 | 10600 | 0.0498 |
269
+ | 0.0387 | 11.3007 | 10650 | 0.0501 |
270
+ | 0.0389 | 11.3538 | 10700 | 0.0486 |
271
+ | 0.0333 | 11.4068 | 10750 | 0.0495 |
272
+ | 0.032 | 11.4598 | 10800 | 0.0469 |
273
+ | 0.0305 | 11.5129 | 10850 | 0.0479 |
274
+ | 0.0362 | 11.5659 | 10900 | 0.0470 |
275
+ | 0.0316 | 11.6189 | 10950 | 0.0487 |
276
+ | 0.0337 | 11.6720 | 11000 | 0.0484 |
277
+ | 0.0386 | 11.7250 | 11050 | 0.0479 |
278
+ | 0.0313 | 11.7780 | 11100 | 0.0475 |
279
+ | 0.0313 | 11.8311 | 11150 | 0.0466 |
280
+ | 0.031 | 11.8841 | 11200 | 0.0474 |
281
+ | 0.0318 | 11.9372 | 11250 | 0.0464 |
282
+ | 0.0339 | 11.9902 | 11300 | 0.0475 |
283
 
284
 
285
  ### Framework versions
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b82aec341661af9ea0b1c8cf3cffa77320966e92019d5d757f88980720f86001
3
  size 1600180696
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91da1bbf2712b34993b621e8ecb3c64b71d3cb428874ca48b790c1c5bdb9192d
3
  size 1600180696
runs/Sep16_02-06-28_m3h110/events.out.tfevents.1757952959.m3h110.3032645.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1809bb19a47b53a4c3c3ed1ce5708ae2937d20c46558e97bbd45d7aa309e50dd
3
- size 156557
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:053f93f848f597fd54d6890f523952b27fb5b5d21ec5366aebc2441f7a6fea61
3
+ size 156911