Zacktree commited on
Commit
e157894
·
verified ·
1 Parent(s): c5ef831

Model save

Browse files
README.md CHANGED
@@ -18,7 +18,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [google/codegemma-7b](https://huggingface.co/google/codegemma-7b) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.0653
22
 
23
  ## Model description
24
 
@@ -37,7 +37,7 @@ More information needed
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
- - learning_rate: 2e-08
41
  - train_batch_size: 1
42
  - eval_batch_size: 3
43
  - seed: 42
@@ -45,125 +45,146 @@ The following hyperparameters were used during training:
45
  - gradient_accumulation_steps: 8
46
  - total_train_batch_size: 8
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
- - lr_scheduler_type: linear
49
  - lr_scheduler_warmup_ratio: 0.03
50
- - num_epochs: 1
51
  - mixed_precision_training: Native AMP
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss |
56
  |:-------------:|:------:|:----:|:---------------:|
57
- | 0.9203 | 0.0530 | 50 | 1.0306 |
58
- | 0.551 | 0.1061 | 100 | 0.5383 |
59
- | 0.4483 | 0.1591 | 150 | 0.4048 |
60
- | 0.3469 | 0.2121 | 200 | 0.3013 |
61
- | 0.2868 | 0.2652 | 250 | 0.2447 |
62
- | 0.2307 | 0.3182 | 300 | 0.2061 |
63
- | 0.1972 | 0.3713 | 350 | 0.1727 |
64
- | 0.1716 | 0.4243 | 400 | 0.1525 |
65
- | 0.1612 | 0.4773 | 450 | 0.1468 |
66
- | 0.1631 | 0.5304 | 500 | 0.1400 |
67
- | 0.1739 | 0.5834 | 550 | 0.1376 |
68
- | 0.148 | 0.6364 | 600 | 0.1330 |
69
- | 0.1413 | 0.6895 | 650 | 0.1274 |
70
- | 0.1464 | 0.7425 | 700 | 0.1267 |
71
- | 0.1376 | 0.7955 | 750 | 0.1240 |
72
- | 0.1287 | 0.8486 | 800 | 0.1210 |
73
- | 0.1402 | 0.9016 | 850 | 0.1198 |
74
- | 0.1261 | 0.9547 | 900 | 0.1173 |
75
- | 0.1195 | 1.0077 | 950 | 0.1145 |
76
- | 0.1254 | 1.0607 | 1000 | 0.1133 |
77
- | 0.1109 | 1.1138 | 1050 | 0.1119 |
78
- | 0.1206 | 1.1668 | 1100 | 0.1093 |
79
- | 0.1195 | 1.2198 | 1150 | 0.1084 |
80
- | 0.1237 | 1.2729 | 1200 | 0.1073 |
81
- | 0.1205 | 1.3259 | 1250 | 0.1064 |
82
- | 0.1105 | 1.3789 | 1300 | 0.1048 |
83
- | 0.1027 | 1.4320 | 1350 | 0.1038 |
84
- | 0.1128 | 1.4850 | 1400 | 0.1035 |
85
- | 0.1207 | 1.5381 | 1450 | 0.1030 |
86
- | 0.1057 | 1.5911 | 1500 | 0.1013 |
87
- | 0.1056 | 1.6441 | 1550 | 0.0996 |
88
- | 0.1086 | 1.6972 | 1600 | 0.0985 |
89
- | 0.1078 | 1.7502 | 1650 | 0.0982 |
90
- | 0.0987 | 1.8032 | 1700 | 0.0968 |
91
- | 0.1037 | 1.8563 | 1750 | 0.0960 |
92
- | 0.1047 | 1.9093 | 1800 | 0.0957 |
93
- | 0.109 | 1.9631 | 1850 | 0.0953 |
94
- | 0.1099 | 2.0162 | 1900 | 0.0938 |
95
- | 0.102 | 2.0692 | 1950 | 0.0927 |
96
- | 0.1063 | 2.1222 | 2000 | 0.0929 |
97
- | 0.0985 | 2.1753 | 2050 | 0.0910 |
98
- | 0.0936 | 2.2283 | 2100 | 0.0908 |
99
- | 0.0998 | 2.2814 | 2150 | 0.0908 |
100
- | 0.0935 | 2.3344 | 2200 | 0.0905 |
101
- | 0.1028 | 2.3874 | 2250 | 0.0904 |
102
- | 0.1036 | 2.4405 | 2300 | 0.0899 |
103
- | 0.0998 | 2.4943 | 2350 | 0.0888 |
104
- | 0.0923 | 2.5473 | 2400 | 0.0890 |
105
- | 0.0979 | 2.6004 | 2450 | 0.0887 |
106
- | 0.1012 | 2.6534 | 2500 | 0.0879 |
107
- | 0.0936 | 2.7064 | 2550 | 0.0882 |
108
- | 0.0948 | 2.7595 | 2600 | 0.0876 |
109
- | 0.0862 | 2.8125 | 2650 | 0.0858 |
110
- | 0.0979 | 2.8656 | 2700 | 0.0853 |
111
- | 0.0873 | 2.9186 | 2750 | 0.0858 |
112
- | 0.0901 | 2.9716 | 2800 | 0.0856 |
113
- | 0.0862 | 3.0247 | 2850 | 0.0838 |
114
- | 0.0901 | 3.0777 | 2900 | 0.0825 |
115
- | 0.0838 | 3.1307 | 2950 | 0.0829 |
116
- | 0.0873 | 3.1838 | 3000 | 0.0830 |
117
- | 0.0798 | 3.2368 | 3050 | 0.0816 |
118
- | 0.0845 | 3.2898 | 3100 | 0.0804 |
119
- | 0.0831 | 3.3429 | 3150 | 0.0804 |
120
- | 0.081 | 3.3959 | 3200 | 0.0792 |
121
- | 0.0842 | 3.4490 | 3250 | 0.0790 |
122
- | 0.0749 | 3.5020 | 3300 | 0.0792 |
123
- | 0.0873 | 3.5550 | 3350 | 0.0795 |
124
- | 0.0754 | 3.6081 | 3400 | 0.0794 |
125
- | 0.0779 | 3.6611 | 3450 | 0.0793 |
126
- | 0.0809 | 3.7141 | 3500 | 0.0774 |
127
- | 0.0807 | 3.7672 | 3550 | 0.0773 |
128
- | 0.0761 | 3.8202 | 3600 | 0.0775 |
129
- | 0.0736 | 3.8732 | 3650 | 0.0757 |
130
- | 0.0746 | 3.9263 | 3700 | 0.0759 |
131
- | 0.0844 | 3.9793 | 3750 | 0.0760 |
132
- | 0.0764 | 4.0324 | 3800 | 0.0758 |
133
- | 0.0722 | 4.0854 | 3850 | 0.0754 |
134
- | 0.068 | 4.1384 | 3900 | 0.0752 |
135
- | 0.0641 | 4.1915 | 3950 | 0.0736 |
136
- | 0.0665 | 4.2445 | 4000 | 0.0733 |
137
- | 0.0674 | 4.2975 | 4050 | 0.0736 |
138
- | 0.0693 | 4.3506 | 4100 | 0.0724 |
139
- | 0.072 | 4.4036 | 4150 | 0.0714 |
140
- | 0.0683 | 4.4566 | 4200 | 0.0716 |
141
- | 0.061 | 4.5097 | 4250 | 0.0718 |
142
- | 0.0653 | 4.5627 | 4300 | 0.0706 |
143
- | 0.0707 | 4.6158 | 4350 | 0.0702 |
144
- | 0.0719 | 4.6688 | 4400 | 0.0714 |
145
- | 0.0669 | 4.7218 | 4450 | 0.0706 |
146
- | 0.0673 | 4.7749 | 4500 | 0.0710 |
147
- | 0.0677 | 4.8279 | 4550 | 0.0714 |
148
- | 0.0795 | 4.8809 | 4600 | 0.0700 |
149
- | 0.0724 | 4.9340 | 4650 | 0.0699 |
150
- | 0.0648 | 4.9870 | 4700 | 0.0707 |
151
- | 0.0614 | 5.0400 | 4750 | 0.0696 |
152
- | 0.0606 | 5.0931 | 4800 | 0.0691 |
153
- | 0.0579 | 5.1461 | 4850 | 0.0691 |
154
- | 0.0645 | 5.1992 | 4900 | 0.0680 |
155
- | 0.0648 | 5.2522 | 4950 | 0.0673 |
156
- | 0.0624 | 5.3052 | 5000 | 0.0672 |
157
- | 0.0604 | 5.3583 | 5050 | 0.0676 |
158
- | 0.0582 | 5.4113 | 5100 | 0.0672 |
159
- | 0.0622 | 5.4643 | 5150 | 0.0664 |
160
- | 0.0589 | 5.5174 | 5200 | 0.0665 |
161
- | 0.0586 | 5.5704 | 5250 | 0.0664 |
162
- | 0.0577 | 5.6234 | 5300 | 0.0666 |
163
- | 0.0538 | 5.6765 | 5350 | 0.0660 |
164
- | 0.0616 | 5.7295 | 5400 | 0.0657 |
165
- | 0.0582 | 5.7826 | 5450 | 0.0661 |
166
- | 0.0599 | 5.8356 | 5500 | 0.0653 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
 
169
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [google/codegemma-7b](https://huggingface.co/google/codegemma-7b) on the None dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.0553
22
 
23
  ## Model description
24
 
 
37
  ### Training hyperparameters
38
 
39
  The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
  - train_batch_size: 1
42
  - eval_batch_size: 3
43
  - seed: 42
 
45
  - gradient_accumulation_steps: 8
46
  - total_train_batch_size: 8
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: cosine
49
  - lr_scheduler_warmup_ratio: 0.03
50
+ - num_epochs: 7
51
  - mixed_precision_training: Native AMP
52
 
53
  ### Training results
54
 
55
  | Training Loss | Epoch | Step | Validation Loss |
56
  |:-------------:|:------:|:----:|:---------------:|
57
+ | 2.2877 | 0.0530 | 50 | 1.7325 |
58
+ | 0.7107 | 0.1061 | 100 | 0.6972 |
59
+ | 0.5874 | 0.1591 | 150 | 0.5366 |
60
+ | 0.4688 | 0.2121 | 200 | 0.4286 |
61
+ | 0.386 | 0.2652 | 250 | 0.3401 |
62
+ | 0.2728 | 0.3182 | 300 | 0.2616 |
63
+ | 0.2257 | 0.3713 | 350 | 0.2191 |
64
+ | 0.1962 | 0.4243 | 400 | 0.1729 |
65
+ | 0.1726 | 0.4773 | 450 | 0.1531 |
66
+ | 0.1569 | 0.5304 | 500 | 0.1439 |
67
+ | 0.186 | 0.5834 | 550 | 0.1374 |
68
+ | 0.1467 | 0.6364 | 600 | 0.1326 |
69
+ | 0.1496 | 0.6895 | 650 | 0.1285 |
70
+ | 0.1484 | 0.7425 | 700 | 0.1265 |
71
+ | 0.1345 | 0.7955 | 750 | 0.1232 |
72
+ | 0.1321 | 0.8486 | 800 | 0.1199 |
73
+ | 0.1459 | 0.9016 | 850 | 0.1203 |
74
+ | 0.1305 | 0.9547 | 900 | 0.1174 |
75
+ | 0.1185 | 1.0077 | 950 | 0.1120 |
76
+ | 0.1208 | 1.0607 | 1000 | 0.1110 |
77
+ | 0.1112 | 1.1138 | 1050 | 0.1094 |
78
+ | 0.1154 | 1.1668 | 1100 | 0.1079 |
79
+ | 0.1131 | 1.2198 | 1150 | 0.1071 |
80
+ | 0.1192 | 1.2729 | 1200 | 0.1066 |
81
+ | 0.1217 | 1.3259 | 1250 | 0.1058 |
82
+ | 0.1055 | 1.3789 | 1300 | 0.1055 |
83
+ | 0.1032 | 1.4320 | 1350 | 0.1032 |
84
+ | 0.1133 | 1.4850 | 1400 | 0.1034 |
85
+ | 0.1142 | 1.5381 | 1450 | 0.1022 |
86
+ | 0.1091 | 1.5911 | 1500 | 0.1020 |
87
+ | 0.1024 | 1.6441 | 1550 | 0.0995 |
88
+ | 0.1166 | 1.6972 | 1600 | 0.1002 |
89
+ | 0.1057 | 1.7502 | 1650 | 0.0994 |
90
+ | 0.1056 | 1.8032 | 1700 | 0.0971 |
91
+ | 0.1059 | 1.8563 | 1750 | 0.0972 |
92
+ | 0.1063 | 1.9093 | 1800 | 0.0959 |
93
+ | 0.1025 | 1.9623 | 1850 | 0.0949 |
94
+ | 0.0938 | 2.0154 | 1900 | 0.0949 |
95
+ | 0.0973 | 2.0684 | 1950 | 0.0941 |
96
+ | 0.1037 | 2.1215 | 2000 | 0.0933 |
97
+ | 0.0888 | 2.1745 | 2050 | 0.0924 |
98
+ | 0.0877 | 2.2275 | 2100 | 0.0917 |
99
+ | 0.0874 | 2.2806 | 2150 | 0.0918 |
100
+ | 0.0874 | 2.3336 | 2200 | 0.0907 |
101
+ | 0.0959 | 2.3866 | 2250 | 0.0898 |
102
+ | 0.0954 | 2.4397 | 2300 | 0.0904 |
103
+ | 0.0887 | 2.4927 | 2350 | 0.0885 |
104
+ | 0.0827 | 2.5457 | 2400 | 0.0886 |
105
+ | 0.086 | 2.5988 | 2450 | 0.0869 |
106
+ | 0.0896 | 2.6518 | 2500 | 0.0861 |
107
+ | 0.0875 | 2.7049 | 2550 | 0.0862 |
108
+ | 0.0872 | 2.7579 | 2600 | 0.0863 |
109
+ | 0.0871 | 2.8109 | 2650 | 0.0850 |
110
+ | 0.0901 | 2.8640 | 2700 | 0.0842 |
111
+ | 0.078 | 2.9170 | 2750 | 0.0837 |
112
+ | 0.0878 | 2.9700 | 2800 | 0.0833 |
113
+ | 0.0807 | 3.0231 | 2850 | 0.0828 |
114
+ | 0.0846 | 3.0761 | 2900 | 0.0827 |
115
+ | 0.0741 | 3.1291 | 2950 | 0.0824 |
116
+ | 0.0778 | 3.1822 | 3000 | 0.0821 |
117
+ | 0.0755 | 3.2352 | 3050 | 0.0822 |
118
+ | 0.0728 | 3.2883 | 3100 | 0.0812 |
119
+ | 0.0758 | 3.3413 | 3150 | 0.0816 |
120
+ | 0.0779 | 3.3943 | 3200 | 0.0796 |
121
+ | 0.0705 | 3.4474 | 3250 | 0.0788 |
122
+ | 0.0725 | 3.5004 | 3300 | 0.0783 |
123
+ | 0.0707 | 3.5534 | 3350 | 0.0787 |
124
+ | 0.0659 | 3.6065 | 3400 | 0.0783 |
125
+ | 0.0698 | 3.6595 | 3450 | 0.0780 |
126
+ | 0.0702 | 3.7125 | 3500 | 0.0766 |
127
+ | 0.07 | 3.7656 | 3550 | 0.0768 |
128
+ | 0.0673 | 3.8186 | 3600 | 0.0760 |
129
+ | 0.0706 | 3.8717 | 3650 | 0.0751 |
130
+ | 0.0633 | 3.9247 | 3700 | 0.0741 |
131
+ | 0.0766 | 3.9777 | 3750 | 0.0740 |
132
+ | 0.0597 | 4.0308 | 3800 | 0.0741 |
133
+ | 0.0541 | 4.0838 | 3850 | 0.0742 |
134
+ | 0.0574 | 4.1368 | 3900 | 0.0734 |
135
+ | 0.0611 | 4.1899 | 3950 | 0.0727 |
136
+ | 0.0651 | 4.2429 | 4000 | 0.0723 |
137
+ | 0.0766 | 4.2991 | 4050 | 0.0699 |
138
+ | 0.0736 | 4.3522 | 4100 | 0.0696 |
139
+ | 0.0755 | 4.4052 | 4150 | 0.0695 |
140
+ | 0.0736 | 4.4582 | 4200 | 0.0692 |
141
+ | 0.0721 | 4.5113 | 4250 | 0.0686 |
142
+ | 0.071 | 4.5643 | 4300 | 0.0680 |
143
+ | 0.0675 | 4.6173 | 4350 | 0.0679 |
144
+ | 0.0714 | 4.6704 | 4400 | 0.0674 |
145
+ | 0.0648 | 4.7234 | 4450 | 0.0669 |
146
+ | 0.0729 | 4.7765 | 4500 | 0.0665 |
147
+ | 0.0656 | 4.8295 | 4550 | 0.0660 |
148
+ | 0.0707 | 4.8825 | 4600 | 0.0659 |
149
+ | 0.0703 | 4.9356 | 4650 | 0.0652 |
150
+ | 0.0669 | 4.9886 | 4700 | 0.0647 |
151
+ | 0.0665 | 5.0416 | 4750 | 0.0643 |
152
+ | 0.0573 | 5.0947 | 4800 | 0.0646 |
153
+ | 0.0628 | 5.1477 | 4850 | 0.0642 |
154
+ | 0.0574 | 5.2007 | 4900 | 0.0637 |
155
+ | 0.067 | 5.2538 | 4950 | 0.0632 |
156
+ | 0.06 | 5.3068 | 5000 | 0.0631 |
157
+ | 0.0637 | 5.3599 | 5050 | 0.0632 |
158
+ | 0.0602 | 5.4129 | 5100 | 0.0623 |
159
+ | 0.0592 | 5.4659 | 5150 | 0.0624 |
160
+ | 0.0567 | 5.5190 | 5200 | 0.0616 |
161
+ | 0.0634 | 5.5720 | 5250 | 0.0615 |
162
+ | 0.0577 | 5.6250 | 5300 | 0.0609 |
163
+ | 0.0534 | 5.6781 | 5350 | 0.0609 |
164
+ | 0.0555 | 5.7311 | 5400 | 0.0613 |
165
+ | 0.0601 | 5.7841 | 5450 | 0.0603 |
166
+ | 0.0533 | 5.8372 | 5500 | 0.0610 |
167
+ | 0.0598 | 5.8902 | 5550 | 0.0598 |
168
+ | 0.0603 | 5.9433 | 5600 | 0.0593 |
169
+ | 0.0606 | 5.9963 | 5650 | 0.0592 |
170
+ | 0.047 | 6.0493 | 5700 | 0.0596 |
171
+ | 0.0468 | 6.1024 | 5750 | 0.0589 |
172
+ | 0.0521 | 6.1554 | 5800 | 0.0586 |
173
+ | 0.045 | 6.2084 | 5850 | 0.0592 |
174
+ | 0.0504 | 6.2615 | 5900 | 0.0581 |
175
+ | 0.0474 | 6.3145 | 5950 | 0.0581 |
176
+ | 0.0497 | 6.3675 | 6000 | 0.0583 |
177
+ | 0.0519 | 6.4206 | 6050 | 0.0579 |
178
+ | 0.0467 | 6.4736 | 6100 | 0.0578 |
179
+ | 0.0475 | 6.5267 | 6150 | 0.0573 |
180
+ | 0.0506 | 6.5797 | 6200 | 0.0569 |
181
+ | 0.0486 | 6.6327 | 6250 | 0.0563 |
182
+ | 0.0441 | 6.6858 | 6300 | 0.0564 |
183
+ | 0.0528 | 6.7388 | 6350 | 0.0560 |
184
+ | 0.0506 | 6.7918 | 6400 | 0.0553 |
185
+ | 0.0491 | 6.8449 | 6450 | 0.0554 |
186
+ | 0.0458 | 6.8979 | 6500 | 0.0550 |
187
+ | 0.0458 | 6.9509 | 6550 | 0.0553 |
188
 
189
 
190
  ### Framework versions
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cd025db70c43240c6fddf0e4faddc75d57cd28b92af3a80c290d2d84fef0ae79
3
  size 4745934024
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f4a19481e8f4debfee25cd001550f23ea827cab4a07a56bed84a8b614f3ff78
3
  size 4745934024
runs/Sep13_08-34-49_m3h110/events.out.tfevents.1757717579.m3h110.277836.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3cbcf5ff44b62b7378136605c241b9e72e3de4b3d0d6a7e2e26399fa507d94a2
3
- size 73868
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cac6b06f9ebb2f506b5c2e6ff7941fee8b1c803435caf477dc72fdf54a00836
3
+ size 74222