--- license: mit datasets: - uoft-cs/cifar10 language: - en metrics: - accuracy - confusion_matrix base_model: - jaeunglee/resnet18-cifar10-unlearning tags: - machine_unlearning - classification --- # Evaluation Report ## Testing Data **Dataset**: CIFAR-10 Test Set **Metrics**: Forget class accuracy(loss), Retain class accuracy(loss) --- ## Training Details ### Training Procedure - **Base Model**: ResNet18 - **Dataset**: CIFAR-10 - **Excluded Class**: Varies by model - **Loss Function**: Negative Log-Likelihood Loss - **Forget loss coefficient (alpha)**: 0.15 - **Gradient normalization clip**: 0.5 - **Optimizer**: SGD with: - Learning rate: 0.1 - Momentum: 0.9 - Weight decay: 5e-4 - Nesterov: True - **Training Epochs**: 1 - **Batch Size**: 2500 - **Hardware**: Single GPU (NVIDIA GeForce RTX 3090) ### Algorithm ### Loss Function for Unlearning The overall loss function is defined as: $$ \mathcal{L} = \alpha \cdot \mathcal{L}_f + (1 - \alpha) \cdot \mathcal{L}_r $$ ### Gradient Update: - **Forget loss gradient ascent** (negating gradients): $$ \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_r + \eta \alpha \nabla_{\theta} \mathcal{L}_f $$ - **Gradient clipping**: $$ \nabla_{\theta} \mathcal{L} \leftarrow \frac{\nabla_{\theta} \mathcal{L}}{\max(1, \frac{\|\nabla_{\theta} \mathcal{L}\|}{C})} $$ where \( C \) is the clipping threshold. --- | Model | Forget Class | Forget class acc(loss) | Retain class acc(loss) | |--------------------------------|--------------|-------------------------|-------------------------| | cifar10_resnet18_AdvNegGrad_0.pth | Airplane | 0.0 (28.448) | 90.52 (0.631) | | cifar10_resnet18_AdvNegGrad_1.pth | Automobile | 0.0 (31.394) | 91.27 (0.516) | | cifar10_resnet18_AdvNegGrad_2.pth | Bird | 0.0 (30.110) | 92.72 (0.475) | | cifar10_resnet18_AdvNegGrad_3.pth | Cat | 0.0 (26.171) | 92.44 (0.512) | | cifar10_resnet18_AdvNegGrad_4.pth | Deer | 0.0 (27.805) | 91.19 (0.561) | | cifar10_resnet18_AdvNegGrad_5.pth | Dog | 0.0 (28.574) | 92.81 (0.456) | | cifar10_resnet18_AdvNegGrad_6.pth | Frog | 0.0 (28.360) | 92.18 (0.486) | | cifar10_resnet18_AdvNegGrad_7.pth | Horse | 0.0 (32.505) | 92.89 (0.401) | | cifar10_resnet18_AdvNegGrad_8.pth | Ship | 0.0 (29.307) | 91.34 (0.543) | | cifar10_resnet18_AdvNegGrad_9.pth | Truck | 0.0 (28.959) | 92.47 (0.474) | ---