--- base_model: darkc0de/XortronCriminalComputingConfig library_name: transformers tags: - mlx license: apache-2.0 language: - en pipeline_tag: text-generation --- # Xonaz81/XortronCriminalComputingConfig-mlx-6Bit Because this model seems to be promising and there was no 6-bit version to be found, I decided to create one from the full model weights. This is a normal 6-bit MLX quant. No advanced DWQ quants for now but coming in the future! The original model [Xonaz81/XortronCriminalComputingConfig-mlx-6Bit](https://huggingface.co/Xonaz81/XortronCriminalComputingConfig-mlx-6Bit) was converted to MLX format from [darkc0de/XortronCriminalComputingConfig](https://huggingface.co/darkc0de/XortronCriminalComputingConfig) using mlx-lm ## Use with mlx or LM-studio ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Xonaz81/XortronCriminalComputingConfig-mlx-6Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```