File size: 11,053 Bytes
f8d9d3c 0109ce2 f8d9d3c 8c921f6 f8d9d3c 8c921f6 f8d9d3c 8c921f6 f8d9d3c 8c921f6 f8d9d3c 8c921f6 f8d9d3c 8c921f6 f8d9d3c 8c921f6 f8d9d3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
license: apache-2.0
---
# Implementation of EasyControl
EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer
<a href='https://arxiv.org/pdf/2503.07027'><img src='https://img.shields.io/badge/Technique-Report-red'></a>
<a href="https://github.com/Xiaojiu-z/EasyControl/tree/dev"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href='https://huggingface.co/spaces/jamesliu1217/EasyControl'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
<a href='https://huggingface.co/spaces/jamesliu1217/EasyControl_Ghibli'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Ghibli_Spaces-purple'></a>
> *[Yuxuan Zhang](https://xiaojiu-z.github.io/YuxuanZhang.github.io/), [Yirui Yuan](https://github.com/Reynoldyy), [Yiren Song](https://scholar.google.com.hk/citations?user=L2YS0jgAAAAJ), [Haofan Wang](https://haofanwang.github.io/), [Jiaming Liu](https://scholar.google.com/citations?user=SmL7oMQAAAAJ&hl=en)*
> <br>
> Tiamat AI, ShanghaiTech University, National University of Singapore, Liblib AI
<img src='assets/teaser.jpg'>
## Features
* **Motivation:** The architecture of diffusion models is transitioning from Unet-based to DiT (Diffusion Transformer). However, the DiT ecosystem lacks mature plugin support and faces challenges such as efficiency bottlenecks, conflicts in multi-condition coordination, and insufficient model adaptability, particularly in zero-shot multi-condition combination scenarios where these issues are most pronounced.
* **Contribution:** We propose EasyControl, an efficient and flexible unified conditional DiT framework. By incorporating a lightweight Condition Injection LoRA module, a Position-Aware Training Paradigm, and a combination of Causal Attention mechanisms with KV Cache technology, we significantly enhance model compatibility, generation flexibility, and inference efficiency.
<img src='assets/method.jpg'>
## Download
You can download the model directly from [Hugging Face](https://huggingface.co/EasyControl/EasyControl).
Or download using Python script:
```python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/canny.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/depth.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/hedsketch.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/inpainting.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/pose.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/seg.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/subject.safetensors", local_dir="./models")
```
If you cannot access Hugging Face, you can use [hf-mirror](https://hf-mirror.com/) to download the models:
```python
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download Xiaojiu-Z/EasyControl --local-dir checkpoints --local-dir-use-symlinks False
```
## Usage
Here's a basic example of using EasyControl. For more details, please follow the instructions in our [__GitHub repository__](https://github.com/Xiaojiu-z/EasyControl):
### Model Initialization
```python
import torch
from PIL import Image
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora
def clear_cache(transformer):
for name, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
# Initialize model
device = "cuda"
base_path = "FLUX.1-dev" # Path to your base model
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16, device=device)
transformer = FluxTransformer2DModel.from_pretrained(
base_path,
subfolder="transformer",
torch_dtype=torch.bfloat16,
device=device
)
pipe.transformer = transformer
pipe.to(device)
# Load control models
lora_path = "./models"
control_models = {
"canny": f"{lora_path}/canny.safetensors",
"depth": f"{lora_path}/depth.safetensors",
"hedsketch": f"{lora_path}/hedsketch.safetensors",
"pose": f"{lora_path}/pose.safetensors",
"seg": f"{lora_path}/seg.safetensors",
"inpainting": f"{lora_path}/inpainting.safetensors",
"subject": f"{lora_path}/subject.safetensors",
"Ghibli": f"{lora_path}/Ghibli.safetensors"
}
```
### Single Condition Control
```python
# Single spatial condition control example
path = control_models["canny"]
set_single_lora(pipe.transformer, path, lora_weights=[1], cond_size=512)
# Generate image
prompt = "A nice car on the beach"
spatial_image = Image.open("./test_imgs/canny.png")
image = pipe(
prompt,
height=720,
width=992,
guidance_scale=3.5,
num_inference_steps=25,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(5),
spatial_images=[spatial_image],
cond_size=512,
).images[0]
# Clear cache after generation
clear_cache(pipe.transformer)
```
### Multi-Condition Control
```python
# Multi-condition control example
paths = [control_models["subject"], control_models["inpainting"]]
set_multi_lora(pipe.transformer, paths, lora_weights=[[1], [1]], cond_size=512)
prompt = "A SKS on the car"
subject_images = [Image.open("./test_imgs/subject_1.png")]
spatial_images = [Image.open("./test_imgs/inpainting.png")]
image = pipe(
prompt,
height=1024,
width=1024,
guidance_scale=3.5,
num_inference_steps=25,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(42),
subject_images=subject_images,
spatial_images=spatial_images,
cond_size=512,
).images[0]
# Clear cache after generation
clear_cache(pipe.transformer)
```
## Usage Tips
- Clear cache after each generation using `clear_cache(pipe.transformer)`
- For optimal performance:
- Start with `guidance_scale=3.5` and adjust based on results
- Use `num_inference_steps=25` for a good balance of quality and speed
- When using set_multi_lora api, make sure the subject lora path(subject) is before the spatial lora path(canny, depth, hedsketch, etc.).
<br>
# 🎨 Ghibli-Style LoRA for Portraits
[NEW!!] New **Ghibli LoRA model** is now released!! Transform Asian portraits into Studio Ghibli-style artwork using this LoRA model. Trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, it preserves facial features while applying the iconic anime aesthetic.
## 🖼️ Example Gallery
> **8 complete transformation sets available** in `/assets/test_imgs/` directory
> *All outputs generated with identical prompt weights* with same prompt: `"Ghibli Studio style, Charming hand-drawn anime-style illustration"`
### Case1
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/00.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/00_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/00_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/00_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/00_3.png"></td>
</tr>
</table>
### Case2
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/02.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/02_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/02_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/02_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/02_3.png"></td>
</tr>
</table>
### Case3
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/03.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/03_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/03_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/03_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/03_3.png"></td>
</tr>
</table>
### Case4
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/04.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/04_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/04_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/04_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/04_3.png"></td>
</tr>
</table>
### Case5
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/06.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/06_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/06_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/06_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/06_3.png"></td>
</tr>
</table>
### Case6
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/07.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/07_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/07_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/07_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/07_3.png"></td>
</tr>
</table>
### Case7
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/08.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/08_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/08_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/08_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/08_3.png"></td>
</tr>
</table>
### Case8
<table>
<tr>
<td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/09.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/09_0.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/09_1.png"></td>
</tr>
<tr>
<td><img src="./assets/test_imgs/ghibli_output/09_2.png"></td>
<td><img src="./assets/test_imgs/ghibli_output/09_3.png"></td>
</tr>
</table>
## Disclaimer
The code of EasyControl is released under [Apache License](https://github.com/Xiaojiu-Z/EasyControl?tab=Apache-2.0-1-ov-file#readme) for both academic and commercial usage. Our released checkpoints are for research purposes only. Users are granted the freedom to create images using this tool, but they are obligated to comply with local laws and utilize it responsibly. The developers will not assume any responsibility for potential misuse by users.
## Citation
```
@misc{zhang2025easycontroladdingefficientflexible,
title={EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer},
author={Yuxuan Zhang and Yirui Yuan and Yiren Song and Haofan Wang and Jiaming Liu},
year={2025},
eprint={2503.07027},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.07027},
}
```
|