File size: 11,053 Bytes
f8d9d3c
 
 
 
 
 
 
 
 
0109ce2
 
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
8c921f6
f8d9d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
license: apache-2.0
---
# Implementation of EasyControl

EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer

<a href='https://arxiv.org/pdf/2503.07027'><img src='https://img.shields.io/badge/Technique-Report-red'></a> 
<a href="https://github.com/Xiaojiu-z/EasyControl/tree/dev"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href='https://huggingface.co/spaces/jamesliu1217/EasyControl'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
<a href='https://huggingface.co/spaces/jamesliu1217/EasyControl_Ghibli'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Ghibli_Spaces-purple'></a>

> *[Yuxuan Zhang](https://xiaojiu-z.github.io/YuxuanZhang.github.io/), [Yirui Yuan](https://github.com/Reynoldyy), [Yiren Song](https://scholar.google.com.hk/citations?user=L2YS0jgAAAAJ), [Haofan Wang](https://haofanwang.github.io/), [Jiaming Liu](https://scholar.google.com/citations?user=SmL7oMQAAAAJ&hl=en)*
> <br>
> Tiamat AI, ShanghaiTech University, National University of Singapore, Liblib AI

<img src='assets/teaser.jpg'>

## Features
* **Motivation:** The architecture of diffusion models is transitioning from Unet-based to DiT (Diffusion Transformer). However, the DiT ecosystem lacks mature plugin support and faces challenges such as efficiency bottlenecks, conflicts in multi-condition coordination, and insufficient model adaptability, particularly in zero-shot multi-condition combination scenarios where these issues are most pronounced.
* **Contribution:** We propose EasyControl, an efficient and flexible unified conditional DiT framework. By incorporating a lightweight Condition Injection LoRA module, a Position-Aware Training Paradigm, and a combination of Causal Attention mechanisms with KV Cache technology, we significantly enhance model compatibility, generation flexibility, and inference efficiency.
<img src='assets/method.jpg'>

## Download

You can download the model directly from [Hugging Face](https://huggingface.co/EasyControl/EasyControl).
Or download using Python script:

```python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/canny.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/depth.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/hedsketch.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/inpainting.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/pose.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/seg.safetensors", local_dir="./models")
hf_hub_download(repo_id="Xiaojiu-Z/EasyControl", filename="models/subject.safetensors", local_dir="./models")
```

If you cannot access Hugging Face, you can use [hf-mirror](https://hf-mirror.com/) to download the models:
```python
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download Xiaojiu-Z/EasyControl --local-dir checkpoints --local-dir-use-symlinks False
```

## Usage
Here's a basic example of using EasyControl. For more details, please follow the instructions in our [__GitHub repository__](https://github.com/Xiaojiu-z/EasyControl):

### Model Initialization

```python
import torch
from PIL import Image
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora

def clear_cache(transformer):
    for name, attn_processor in transformer.attn_processors.items():
        attn_processor.bank_kv.clear()

# Initialize model
device = "cuda"
base_path = "FLUX.1-dev"  # Path to your base model
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16, device=device)
transformer = FluxTransformer2DModel.from_pretrained(
    base_path, 
    subfolder="transformer",
    torch_dtype=torch.bfloat16, 
    device=device
)
pipe.transformer = transformer
pipe.to(device)

# Load control models
lora_path = "./models"
control_models = {
    "canny": f"{lora_path}/canny.safetensors",
    "depth": f"{lora_path}/depth.safetensors",
    "hedsketch": f"{lora_path}/hedsketch.safetensors",
    "pose": f"{lora_path}/pose.safetensors",
    "seg": f"{lora_path}/seg.safetensors",
    "inpainting": f"{lora_path}/inpainting.safetensors",
    "subject": f"{lora_path}/subject.safetensors",
    "Ghibli": f"{lora_path}/Ghibli.safetensors"
}
```

### Single Condition Control

```python
# Single spatial condition control example
path = control_models["canny"]
set_single_lora(pipe.transformer, path, lora_weights=[1], cond_size=512)

# Generate image
prompt = "A nice car on the beach"
spatial_image = Image.open("./test_imgs/canny.png")

image = pipe(
    prompt,
    height=720,
    width=992,
    guidance_scale=3.5,
    num_inference_steps=25,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(5),
    spatial_images=[spatial_image],
    cond_size=512,
).images[0]

# Clear cache after generation
clear_cache(pipe.transformer)
```

### Multi-Condition Control

```python
# Multi-condition control example
paths = [control_models["subject"], control_models["inpainting"]]
set_multi_lora(pipe.transformer, paths, lora_weights=[[1], [1]], cond_size=512)

prompt = "A SKS on the car"
subject_images = [Image.open("./test_imgs/subject_1.png")]
spatial_images = [Image.open("./test_imgs/inpainting.png")]

image = pipe(
    prompt,
    height=1024,
    width=1024,
    guidance_scale=3.5,
    num_inference_steps=25,
    max_sequence_length=512,
    generator=torch.Generator("cpu").manual_seed(42),
    subject_images=subject_images,
    spatial_images=spatial_images,
    cond_size=512,
).images[0]

# Clear cache after generation
clear_cache(pipe.transformer)
```


## Usage Tips

- Clear cache after each generation using `clear_cache(pipe.transformer)`
- For optimal performance:
  - Start with `guidance_scale=3.5` and adjust based on results
  - Use `num_inference_steps=25` for a good balance of quality and speed
- When using set_multi_lora api, make sure the subject lora path(subject) is before the spatial lora path(canny, depth, hedsketch, etc.).

<br> 

# 🎨 Ghibli-Style LoRA for Portraits

[NEW!!] New **Ghibli LoRA model** is now released!! Transform Asian portraits into Studio Ghibli-style artwork using this LoRA model. Trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, it preserves facial features while applying the iconic anime aesthetic.

## 🖼️ Example Gallery
> **8 complete transformation sets available** in `/assets/test_imgs/` directory  
> *All outputs generated with identical prompt weights* with same prompt: `"Ghibli Studio style, Charming hand-drawn anime-style illustration"`
### Case1
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/00.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/00_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/00_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/00_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/00_3.png"></td>
  </tr>
</table>

### Case2
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/02.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/02_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/02_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/02_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/02_3.png"></td>
  </tr>
</table>

### Case3
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/03.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/03_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/03_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/03_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/03_3.png"></td>
  </tr>
</table>

### Case4
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/04.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/04_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/04_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/04_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/04_3.png"></td>
  </tr>
</table>

### Case5
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/06.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/06_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/06_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/06_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/06_3.png"></td>
  </tr>
</table>

### Case6
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/07.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/07_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/07_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/07_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/07_3.png"></td>
  </tr>
</table>

### Case7
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/08.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/08_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/08_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/08_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/08_3.png"></td>
  </tr>
</table>

### Case8
<table>
  <tr>
    <td rowspan="2"><img src="./assets/test_imgs/ghibli_ref/09.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/09_0.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/09_1.png"></td>
  </tr>
  <tr>
    <td><img src="./assets/test_imgs/ghibli_output/09_2.png"></td>
    <td><img src="./assets/test_imgs/ghibli_output/09_3.png"></td>
  </tr>
</table>


## Disclaimer
The code of EasyControl is released under [Apache License](https://github.com/Xiaojiu-Z/EasyControl?tab=Apache-2.0-1-ov-file#readme) for both academic and commercial usage. Our released checkpoints are for research purposes only. Users are granted the freedom to create images using this tool, but they are obligated to comply with local laws and utilize it responsibly. The developers will not assume any responsibility for potential misuse by users.


## Citation
```
@misc{zhang2025easycontroladdingefficientflexible,
      title={EasyControl: Adding Efficient and Flexible Control for Diffusion Transformer}, 
      author={Yuxuan Zhang and Yirui Yuan and Yiren Song and Haofan Wang and Jiaming Liu},
      year={2025},
      eprint={2503.07027},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2503.07027}, 
}
```