Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,24 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
# Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks
|
5 |
-
|
6 |
-
**Tags**:
|
7 |
-
- Pretrain_Model
|
8 |
-
- transformers
|
9 |
-
- TCM
|
10 |
-
- herberta
|
11 |
-
- text embedding
|
12 |
-
|
13 |
-
**License**: Apache-2.0
|
14 |
-
**Inference**: true
|
15 |
-
**Language**: zh, en
|
16 |
-
**Base Model**: hfl/chinese-roberta-wwm-ext
|
17 |
-
**Library Name**: transformers
|
18 |
|
19 |
-
|
20 |
|
21 |
## Introduction
|
22 |
|
@@ -55,18 +57,6 @@ We named the model "Herberta" by combining "Herb" and "Roberta" to signify its p
|
|
55 |
![Loss](https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/BJ7enbRg13IYAZuxwraPP.png)
|
56 |
![Perplexity](https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/lOohRMIctPJZKM5yEEcQ2.png)
|
57 |
|
58 |
-
<!-- <table>
|
59 |
-
<tr>
|
60 |
-
<td align="center"><strong>Accuracy</strong></td>
|
61 |
-
<td align="center"><strong>Loss</strong></td>
|
62 |
-
<td align="center"><strong>Perplexity</strong></td>
|
63 |
-
</tr>
|
64 |
-
<tr>
|
65 |
-
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/RDgI-0Ro2kMiwV853Wkgx.png" alt="Accuracy" width="800"></td>
|
66 |
-
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/BJ7enbRg13IYAZuxwraPP.png" alt="Loss" width="800"></td>
|
67 |
-
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/lOohRMIctPJZKM5yEEcQ2.png" alt="Perplexity" width="800"></td>
|
68 |
-
</tr>
|
69 |
-
</table> -->
|
70 |
|
71 |
### Pretraining Configuration
|
72 |
|
@@ -77,21 +67,6 @@ We named the model "Herberta" by combining "Herb" and "Roberta" to signify its p
|
|
77 |
- Learning Rate: `1e-5` with an epoch-based decay (`epoch * 0.1`)
|
78 |
- Tokenization: Sentence-based tokenization with padding for sequences <512 tokens.
|
79 |
|
80 |
-
#### Modern Textbooks
|
81 |
-
- Pretraining Strategy: Dynamic MASK + Warmup + Linear Decay
|
82 |
-
- Sequence Length: 512
|
83 |
-
- Batch Size: 16
|
84 |
-
- Learning Rate: Warmup (10% steps) + Linear Decay (1e-5 initial rate)
|
85 |
-
- Tokenization: Continuous tokenization (512 tokens) without sentence segmentation.
|
86 |
-
|
87 |
-
#### V4 Mixed Dataset (Ancient + Modern)
|
88 |
-
- Dataset: Combined 48 modern textbooks + 700 ancient books
|
89 |
-
- Pretraining Strategy: Dynamic MASK, warmup, and linear decay (1e-5 learning rate).
|
90 |
-
- Epochs: 20
|
91 |
-
- Sequence Length: 512
|
92 |
-
- Batch Size: 16
|
93 |
-
- Tokenization: Continuous tokenization.
|
94 |
-
|
95 |
---
|
96 |
|
97 |
## Downstream Task: TCM Pattern Classification
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- PretrainModel
|
4 |
+
- TCM
|
5 |
+
- transformer
|
6 |
+
- herberta
|
7 |
+
- text-embedding
|
8 |
license: apache-2.0
|
9 |
+
language:
|
10 |
+
- zh
|
11 |
+
- en
|
12 |
+
metrics:
|
13 |
+
- accuracy
|
14 |
+
base_model:
|
15 |
+
- hfl/chinese-roberta-wwm-ext-large
|
16 |
+
new_version: XiaoEnn/herberta_seq_512_V2
|
17 |
+
inference: true
|
18 |
+
library_name: transformers
|
19 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Herberta: A Pretrained Model for TCM Herbal Medicine and Downstream Tasks
|
22 |
|
23 |
## Introduction
|
24 |
|
|
|
57 |
![Loss](https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/BJ7enbRg13IYAZuxwraPP.png)
|
58 |
![Perplexity](https://cdn-uploads.huggingface.co/production/uploads/6564baaa393bae9c194fc32e/lOohRMIctPJZKM5yEEcQ2.png)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
### Pretraining Configuration
|
62 |
|
|
|
67 |
- Learning Rate: `1e-5` with an epoch-based decay (`epoch * 0.1`)
|
68 |
- Tokenization: Sentence-based tokenization with padding for sequences <512 tokens.
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
---
|
71 |
|
72 |
## Downstream Task: TCM Pattern Classification
|