File size: 2,138 Bytes
a7b736b b994877 a7b736b 77722e7 a7b736b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
base_model: thenlper/gte-small
library_name: transformers.js
---
https://huggingface.co/thenlper/gte-small with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
```bash
npm i @xenova/transformers
```
You can then use the model to compute embeddings like this:
```js
import { pipeline } from '@xenova/transformers';
// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/gte-small');
// Compute sentence embeddings
const sentences = ['That is a happy person', 'That is a very happy person'];
const output = await extractor(sentences, { pooling: 'mean', normalize: true });
console.log(output);
// Tensor {
// dims: [ 2, 384 ],
// type: 'float32',
// data: Float32Array(768) [ -0.053555335849523544, 0.00843878649175167, ... ],
// size: 768
// }
// Compute cosine similarity
import { cos_sim } from '@xenova/transformers';
console.log(cos_sim(output[0].data, output[1].data))
// 0.9798319649182318
```
You can convert this Tensor to a nested JavaScript array using `.tolist()`:
```js
console.log(output.tolist());
// [
// [ -0.053555335849523544, 0.00843878649175167, 0.06234041228890419, ... ],
// [ -0.049980051815509796, 0.03879701718688011, 0.07510733604431152, ... ]
// ]
```
By default, an 8-bit quantized version of the model is used, but you can choose to use the full-precision (fp32) version by specifying `{ quantized: false }` in the `pipeline` function:
```js
const extractor = await pipeline('feature-extraction', 'Xenova/gte-small', { quantized: false });
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |