File size: 7,252 Bytes
055c1d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29dcfe
 
1910bce
 
e29dcfe
 
1910bce
 
 
 
 
 
 
 
 
 
e401779
1910bce
e401779
 
1910bce
e401779
 
 
 
 
 
 
 
 
 
 
1910bce
 
e401779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910bce
e401779
 
236e9ef
e401779
 
1910bce
 
e401779
 
 
 
 
 
 
 
1910bce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
license: apache-2.0
datasets:
- 012shin/fake-audio-detection-augmented
language:
- en
metrics:
- accuracy
- f1
- recall
- precision
base_model:
- MIT/ast-finetuned-audioset-10-10-0.4593
pipeline_tag: audio-classification
library_name: transformers
tags:
- audio
- audio-classification
- fake-audio-detection
- ast
model-index:
- name: ast-fakeaudio-detector
  results:
  - task:
      type: audio-classification
      name: Audio Classification
    dataset:
      name: fake-audio-detection-augmented
      type: 012shin/fake-audio-detection-augmented
    metrics:
      - type: accuracy
        value: 0.9662
      - type: f1
        value: 0.9710
      - type: precision
        value: 0.9692
      - type: recall
        value: 0.9728
---

# AST Fine-tuned for Fake Audio Detection

This model is a binary classification head fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) for detecting fake/synthetic audio. The original AST (Audio Spectrogram Transformer) classification head was replaced with a binary classification layer optimized for fake audio detection.

## Model Description

- **Base Model**: MIT/ast-finetuned-audioset-10-10-0.4593 (AST pretrained on AudioSet)
- **Task**: Binary classification (fake/real audio detection)
- **Input**: Audio converted to Mel spectrogram (128 mel bins, 1024 time frames)
- **Output**: Binary prediction (0: real audio, 1: fake audio)
- **Training Hardware**: 2x NVIDIA T4 GPUs

## Training Configuration

```python
{
    'learning_rate': 1e-5,
    'weight_decay': 0.01,
    'n_iterations': 10000,
    'batch_size': 8,
    'gradient_accumulation_steps': 8,
    'validate_every': 500,
    'val_samples': 5000
}
```

## Dataset Distribution

The model was trained on [012shin/fake-audio-detection-augmented](https://huggingface.co/datasets/012shin/fake-audio-detection-augmented) dataset with the following class distribution:

```
Training Set (80%):
- Fake Audio (0): 43,460 samples (63.69%)
- Real Audio (1): 24,776 samples (36.31%)

Test Set (20%):
- Fake Audio (0): 10,776 samples (63.17%)
- Real Audio (1): 6,284 samples (36.83%)
```

## Model Performance

Final metrics on validation set:
- Accuracy: 0.9662 (96.62%)
- F1 Score: 0.9710 (97.10%)
- Precision: 0.9692 (96.92%)
- Recall: 0.9728 (97.28%)

# Usage Guide

## 1. Environment Setup
First, clone the AST repository and install required dependencies:
```python
# Clone AST repository and set up path
git clone https://github.com/YuanGongND/ast.git
import sys
sys.path.append('./ast')
cd ast

# Install dependencies
pip install timm==0.4.5 wget

# Required imports
import os
import torch
import torchaudio
import matplotlib.pyplot as plt
import numpy as np
from torch import nn
from src.models import ASTModel
```

## 2. Model Implementation
Implement the BinaryAST model class:
```python
class BinaryAST(nn.Module):
    def __init__(self, pretrained_path='pretrained_models/audioset_10_10_0.4593.pth'):
        super().__init__()
        # Initialize AST base model
        self.ast = ASTModel(
            label_dim=527,
            input_fdim=128,
            input_tdim=1024,
            imagenet_pretrain=True,
            audioset_pretrain=False,
            model_size='base384'
        )
        
        # Load pretrained weights if available
        if os.path.exists(pretrained_path):
            print(f"Loading pretrained weights from {pretrained_path}")
            state_dict = torch.load(pretrained_path, map_location='cpu', weights_only=True)
            self.ast.load_state_dict(state_dict, strict=False)

        # Binary classification head
        self.ast.mlp_head = nn.Sequential(
            nn.LayerNorm(768),
            nn.Dropout(0.3),
            nn.Linear(768, 1)
        )

    def forward(self, x):
        return self.ast(x)
```

## 3. Audio Processing Function
Function to preprocess audio files for model input:
```python
def process_audio(file_path, sr=16000):
    """
    Process audio file for model inference.
    
    Args:
        file_path (str): Path to audio file
        sr (int): Target sample rate (default: 16000)
    
    Returns:
        torch.Tensor: Processed mel spectrogram (1024 x 128)
    """
    # Load audio
    audio_tensor, orig_sr = torchaudio.load(file_path)
    print(f"Initial tensor shape: {audio_tensor.shape}, sample_rate={orig_sr}")

    # Convert to mono if needed
    if audio_tensor.shape[0] > 1:
        audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True)

    # Resample to target sample rate
    if orig_sr != sr:
        resampler = torchaudio.transforms.Resample(orig_sr, sr)
        audio_tensor = resampler(audio_tensor)

    # Create mel spectrogram
    mel_spec = torchaudio.transforms.MelSpectrogram(
        sample_rate=sr,
        n_mels=128,
        n_fft=2048,
        hop_length=160
    )(audio_tensor)
    spec_db = torchaudio.transforms.AmplitudeToDB()(mel_spec)

    # Post-process spectrogram
    spec_db = spec_db.squeeze(0).transpose(0, 1)
    spec_db = (spec_db + 4.26) / (4.57 * 2)  # Normalize
    
    # Ensure correct length (pad/trim to 1024 frames)
    target_len = 1024
    if spec_db.shape[0] < target_len:
        pad = torch.zeros(target_len - spec_db.shape[0], 128)
        spec_db = torch.cat([spec_db, pad], dim=0)
    else:
        spec_db = spec_db[:target_len, :]

    return spec_db
```

## 4. Model Loading and Inference
Example of loading the model and running inference:
```python
# Initialize and load model
model = BinaryAST()
checkpoint = torch.load('/content/final_model.pth', map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()

# Process audio file
spec = process_audio('path_to_audio.mp3')

# Visualize spectrogram (optional)
plt.figure(figsize=(10, 3))
plt.imshow(spec.numpy().T, aspect='auto', origin='lower')
plt.title('Mel Spectrogram')
plt.xlabel('Time Frames')
plt.ylabel('Mel Bins')
plt.colorbar()
plt.show()

# Run inference
spec_batch = spec.unsqueeze(0)
with torch.no_grad():
    output = model(spec_batch)
    prob_fake = torch.sigmoid(output).item()

print(f"Probability of fake audio: {prob_fake:.4f}")
print("Prediction:", "FAKE" if prob_fake > 0.5 else "REAL")
```

## Key Notes:
- Ensure audio files are accessible and in a supported format
- The model expects 16kHz sample rate input
- Input audio is converted to mono if stereo
- The model outputs probability scores (>0.5 indicates fake audio)
- Visualization of spectrograms is optional but useful for debugging


## Limitations

Important considerations when using this model:
1. The model works best with 16kHz audio input
2. Performance may vary with different types of audio manipulation not present in training data
3. Very short audio clips (<1 second) might not provide reliable results
4. The model should not be used as the sole determiner for real/fake audio detection

## Training Details

The training process involved:
1. Loading the base AST model pretrained on AudioSet
2. Replacing the classification head with a binary classifier
3. Fine-tuning on the fake audio detection dataset for 10000 iterations
4. Using gradient accumulation (8 steps) with batch size 8
5. Implementing validation checks every 500 steps