Text Generation
Transformers
PyTorch
llama
text-generation-inference
Inference Endpoints
File size: 3,995 Bytes
1d9e3af
 
 
a6e6a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: llama2
---

This is the **Full-Weight** of WizardLM-70B V1.0 model, this model is trained from **Llama-2 70b**.

## WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions



<p align="center">
πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a>  β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a>  <br>
</p>
<p align="center">
    πŸ‘‹ Join our <a href="https://discord.gg/bpmeZD7V" target="_blank">Discord</a>
</p>


<font size=4>
    
| <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>WizardEval</sup> | <sup>HumanEval</sup>  | <sup>License</sup>|
| ----- |------| ---- |------|-------| ----- | ----- | ----- |
| <sup>WizardLM-70B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|  | <sup>7.78</sup> | <sup>%</sup>	 | <sup> - </sup>|<sup>   pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>|  | <sup>7.06</sup> | <sup>89.17%</sup>	 | <sup>101.4% </sup>|<sup>36.6  pass@1</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
| <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> |  | <sup>6.76</sup>  |<sup>86.32%</sup>	 | <sup>99.3% </sup> |<sup>25.0  pass@1</sup>| <sup>Non-commercial</sup>|
| <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup>  | | <sup>7.01</sup> |  |  <sup>97.8% </sup> | <sup>37.8  pass@1</sup>| <sup>Non-commercial</sup> |
| <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> |  | <sup>6.35</sup> | <sup>75.31%</sup> |  <sup>89.1% </sup> |<sup> 24.0 pass@1 </sup> | <sup>Non-commercial</sup>|
| <sup>WizardLM-7B-V1.0 </sup>|  <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>|  |  |  <sup>78.0% </sup> |<sup>19.1 pass@1 </sup>|<sup> Non-commercial</sup>|
| <sup>WizardCoder-15B-V1.0</sup> | <sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a></sup>  | <sup>πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a></sup> | || |<sup> 57.3 pass@1 </sup> | <sup> <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a></sup> |
</font>

**Repository**: https://github.com/nlpxucan/WizardLM

**Twitter**:


- πŸ”₯πŸ”₯πŸ”₯ [7/25/2023] We released **WizardLM V1.2** models. The **WizardLM-13B-V1.2** is here ([Demo_13B-V1.2](https://b7a19878988c8c73.gradio.app), [Demo_13B-V1.2_bak-1](https://d0a37a76e0ac4b52.gradio.app/), [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-13B-V1.2)). Please checkout the [paper](https://arxiv.org/abs/2304.12244).
- πŸ”₯πŸ”₯πŸ”₯ [7/25/2023] The **WizardLM-13B-V1.2** achieves **7.06** on [MT-Bench Leaderboard](https://chat.lmsys.org/?leaderboard), **89.17%** on [AlpacaEval Leaderboard](https://tatsu-lab.github.io/alpaca_eval/), and **101.4%** on [WizardLM Eval](https://github.com/nlpxucan/WizardLM/blob/main/WizardLM/data/WizardLM_testset.jsonl). (Note: MT-Bench and AlpacaEval are all self-test, will push update and request review. All tests are completed under their official settings.)