Wejh commited on
Commit
cdee7ff
·
verified ·
0 Parent(s):

Duplicate from Wejh/Affine-9999

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - vllm
7
+ ---
8
+
9
+ <p align="center">
10
+ <img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg">
11
+ </p>
12
+
13
+ <p align="center">
14
+ <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ·
15
+ <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ·
16
+ <a href="https://openai.com/index/gpt-oss-model-card"><strong>Model card</strong></a> ·
17
+ <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a>
18
+ </p>
19
+
20
+ <br>
21
+
22
+ Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
23
+
24
+ We’re releasing two flavors of these open models:
25
+ - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters)
26
+ - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
27
+
28
+ Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
29
+
30
+
31
+ > [!NOTE]
32
+ > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model.
33
+
34
+ # Highlights
35
+
36
+ * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment.
37
+ * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs.
38
+ * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
39
+ * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
40
+ * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
41
+ * **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory.
42
+
43
+ ---
44
+
45
+ # Inference examples
46
+
47
+ ## Transformers
48
+
49
+ You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package.
50
+
51
+ To get started, install the necessary dependencies to setup your environment:
52
+
53
+ ```
54
+ pip install -U transformers kernels torch
55
+ ```
56
+
57
+ Once, setup you can proceed to run the model by running the snippet below:
58
+
59
+ ```py
60
+ from transformers import pipeline
61
+ import torch
62
+
63
+ model_id = "openai/gpt-oss-20b"
64
+
65
+ pipe = pipeline(
66
+ "text-generation",
67
+ model=model_id,
68
+ torch_dtype="auto",
69
+ device_map="auto",
70
+ )
71
+
72
+ messages = [
73
+ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
74
+ ]
75
+
76
+ outputs = pipe(
77
+ messages,
78
+ max_new_tokens=256,
79
+ )
80
+ print(outputs[0]["generated_text"][-1])
81
+ ```
82
+
83
+ Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver:
84
+
85
+ ```
86
+ transformers serve
87
+ transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b
88
+ ```
89
+
90
+ [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
91
+
92
+ ## vLLM
93
+
94
+ vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server.
95
+
96
+ ```bash
97
+ uv pip install --pre vllm==0.10.1+gptoss \
98
+ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \
99
+ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
100
+ --index-strategy unsafe-best-match
101
+
102
+ vllm serve openai/gpt-oss-20b
103
+ ```
104
+
105
+ [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
106
+
107
+ ## PyTorch / Triton
108
+
109
+ To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation).
110
+
111
+ ## Ollama
112
+
113
+ If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
114
+
115
+ ```bash
116
+ # gpt-oss-20b
117
+ ollama pull gpt-oss:20b
118
+ ollama run gpt-oss:20b
119
+ ```
120
+
121
+ [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
122
+
123
+ #### LM Studio
124
+
125
+ If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
126
+
127
+ ```bash
128
+ # gpt-oss-20b
129
+ lms get openai/gpt-oss-20b
130
+ ```
131
+
132
+ Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
133
+
134
+ ---
135
+
136
+ # Download the model
137
+
138
+ You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
139
+
140
+ ```shell
141
+ # gpt-oss-20b
142
+ huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/
143
+ pip install gpt-oss
144
+ python -m gpt_oss.chat model/
145
+ ```
146
+
147
+ # Reasoning levels
148
+
149
+ You can adjust the reasoning level that suits your task across three levels:
150
+
151
+ * **Low:** Fast responses for general dialogue.
152
+ * **Medium:** Balanced speed and detail.
153
+ * **High:** Deep and detailed analysis.
154
+
155
+ The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
156
+
157
+ # Tool use
158
+
159
+ The gpt-oss models are excellent for:
160
+ * Web browsing (using built-in browsing tools)
161
+ * Function calling with defined schemas
162
+ * Agentic operations like browser tasks
163
+
164
+ # Fine-tuning
165
+
166
+ Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
167
+
168
+ This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node.
USAGE_POLICY ADDED
@@ -0,0 +1 @@
 
 
1
+ We aim for our tools to be used safely, responsibly, and democratically, while maximizing your control over how you use them. By using OpenAI gpt-oss-20b, you agree to comply with all applicable law.
chat_template.jinja ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {#-
2
+ In addition to the normal inputs of `messages` and `tools`, this template also accepts the
3
+ following kwargs:
4
+ - "builtin_tools": A list, can contain "browser" and/or "python".
5
+ - "model_identity": A string that optionally describes the model identity.
6
+ - "reasoning_effort": A string that describes the reasoning effort, defaults to "medium".
7
+ #}
8
+
9
+ {#- Tool Definition Rendering ============================================== #}
10
+ {%- macro render_typescript_type(param_spec, required_params, is_nullable=false) -%}
11
+ {%- if param_spec.type == "array" -%}
12
+ {%- if param_spec['items'] -%}
13
+ {%- if param_spec['items']['type'] == "string" -%}
14
+ {{- "string[]" }}
15
+ {%- elif param_spec['items']['type'] == "number" -%}
16
+ {{- "number[]" }}
17
+ {%- elif param_spec['items']['type'] == "integer" -%}
18
+ {{- "number[]" }}
19
+ {%- elif param_spec['items']['type'] == "boolean" -%}
20
+ {{- "boolean[]" }}
21
+ {%- else -%}
22
+ {%- set inner_type = render_typescript_type(param_spec['items'], required_params) -%}
23
+ {%- if inner_type == "object | object" or inner_type|length > 50 -%}
24
+ {{- "any[]" }}
25
+ {%- else -%}
26
+ {{- inner_type + "[]" }}
27
+ {%- endif -%}
28
+ {%- endif -%}
29
+ {%- if param_spec.nullable -%}
30
+ {{- " | null" }}
31
+ {%- endif -%}
32
+ {%- else -%}
33
+ {{- "any[]" }}
34
+ {%- if param_spec.nullable -%}
35
+ {{- " | null" }}
36
+ {%- endif -%}
37
+ {%- endif -%}
38
+ {%- elif param_spec.type is defined and param_spec.type is iterable and param_spec.type is not string and param_spec.type is not mapping and param_spec.type[0] is defined -%}
39
+ {#- Handle array of types like ["object", "object"] from Union[dict, list] #}
40
+ {%- if param_spec.type | length > 1 -%}
41
+ {{- param_spec.type | join(" | ") }}
42
+ {%- else -%}
43
+ {{- param_spec.type[0] }}
44
+ {%- endif -%}
45
+ {%- elif param_spec.oneOf -%}
46
+ {#- Handle oneOf schemas - check for complex unions and fallback to any #}
47
+ {%- set has_object_variants = false -%}
48
+ {%- for variant in param_spec.oneOf -%}
49
+ {%- if variant.type == "object" -%}
50
+ {%- set has_object_variants = true -%}
51
+ {%- endif -%}
52
+ {%- endfor -%}
53
+ {%- if has_object_variants and param_spec.oneOf|length > 1 -%}
54
+ {{- "any" }}
55
+ {%- else -%}
56
+ {%- for variant in param_spec.oneOf -%}
57
+ {{- render_typescript_type(variant, required_params) -}}
58
+ {%- if variant.description %}
59
+ {{- "// " + variant.description }}
60
+ {%- endif -%}
61
+ {%- if variant.default is defined %}
62
+ {{ "// default: " + variant.default|tojson }}
63
+ {%- endif -%}
64
+ {%- if not loop.last %}
65
+ {{- " | " }}
66
+ {% endif -%}
67
+ {%- endfor -%}
68
+ {%- endif -%}
69
+ {%- elif param_spec.type == "string" -%}
70
+ {%- if param_spec.enum -%}
71
+ {{- '"' + param_spec.enum|join('" | "') + '"' -}}
72
+ {%- else -%}
73
+ {{- "string" }}
74
+ {%- if param_spec.nullable %}
75
+ {{- " | null" }}
76
+ {%- endif -%}
77
+ {%- endif -%}
78
+ {%- elif param_spec.type == "number" -%}
79
+ {{- "number" }}
80
+ {%- elif param_spec.type == "integer" -%}
81
+ {{- "number" }}
82
+ {%- elif param_spec.type == "boolean" -%}
83
+ {{- "boolean" }}
84
+
85
+ {%- elif param_spec.type == "object" -%}
86
+ {%- if param_spec.properties -%}
87
+ {{- "{\n" }}
88
+ {%- for prop_name, prop_spec in param_spec.properties.items() -%}
89
+ {{- prop_name -}}
90
+ {%- if prop_name not in (param_spec.required or []) -%}
91
+ {{- "?" }}
92
+ {%- endif -%}
93
+ {{- ": " }}
94
+ {{ render_typescript_type(prop_spec, param_spec.required or []) }}
95
+ {%- if not loop.last -%}
96
+ {{-", " }}
97
+ {%- endif -%}
98
+ {%- endfor -%}
99
+ {{- "}" }}
100
+ {%- else -%}
101
+ {{- "object" }}
102
+ {%- endif -%}
103
+ {%- else -%}
104
+ {{- "any" }}
105
+ {%- endif -%}
106
+ {%- endmacro -%}
107
+
108
+ {%- macro render_tool_namespace(namespace_name, tools) -%}
109
+ {{- "## " + namespace_name + "\n\n" }}
110
+ {{- "namespace " + namespace_name + " {\n\n" }}
111
+ {%- for tool in tools %}
112
+ {%- set tool = tool.function %}
113
+ {{- "// " + tool.description + "\n" }}
114
+ {{- "type "+ tool.name + " = " }}
115
+ {%- if tool.parameters and tool.parameters.properties %}
116
+ {{- "(_: {\n" }}
117
+ {%- for param_name, param_spec in tool.parameters.properties.items() %}
118
+ {%- if param_spec.description %}
119
+ {{- "// " + param_spec.description + "\n" }}
120
+ {%- endif %}
121
+ {{- param_name }}
122
+ {%- if param_name not in (tool.parameters.required or []) -%}
123
+ {{- "?" }}
124
+ {%- endif -%}
125
+ {{- ": " }}
126
+ {{- render_typescript_type(param_spec, tool.parameters.required or []) }}
127
+ {%- if param_spec.default is defined -%}
128
+ {%- if param_spec.enum %}
129
+ {{- ", // default: " + param_spec.default }}
130
+ {%- elif param_spec.oneOf %}
131
+ {{- "// default: " + param_spec.default }}
132
+ {%- else %}
133
+ {{- ", // default: " + param_spec.default|tojson }}
134
+ {%- endif -%}
135
+ {%- endif -%}
136
+ {%- if not loop.last %}
137
+ {{- ",\n" }}
138
+ {%- else %}
139
+ {{- ",\n" }}
140
+ {%- endif -%}
141
+ {%- endfor %}
142
+ {{- "}) => any;\n\n" }}
143
+ {%- else -%}
144
+ {{- "() => any;\n\n" }}
145
+ {%- endif -%}
146
+ {%- endfor %}
147
+ {{- "} // namespace " + namespace_name }}
148
+ {%- endmacro -%}
149
+
150
+ {%- macro render_builtin_tools(browser_tool, python_tool) -%}
151
+ {%- if browser_tool %}
152
+ {{- "## browser\n\n" }}
153
+ {{- "// Tool for browsing.\n" }}
154
+ {{- "// The `cursor` appears in brackets before each browsing display: `[{cursor}]`.\n" }}
155
+ {{- "// Cite information from the tool using the following format:\n" }}
156
+ {{- "// `【{cursor}†L{line_start}(-L{line_end})?】`, for example: `【6†L9-L11】` or `【8†L3】`.\n" }}
157
+ {{- "// Do not quote more than 10 words directly from the tool output.\n" }}
158
+ {{- "// sources=web (default: web)\n" }}
159
+ {{- "namespace browser {\n\n" }}
160
+ {{- "// Searches for information related to `query` and displays `topn` results.\n" }}
161
+ {{- "type search = (_: {\n" }}
162
+ {{- "query: string,\n" }}
163
+ {{- "topn?: number, // default: 10\n" }}
164
+ {{- "source?: string,\n" }}
165
+ {{- "}) => any;\n\n" }}
166
+ {{- "// Opens the link `id` from the page indicated by `cursor` starting at line number `loc`, showing `num_lines` lines.\n" }}
167
+ {{- "// Valid link ids are displayed with the formatting: `【{id}†.*】`.\n" }}
168
+ {{- "// If `cursor` is not provided, the most recent page is implied.\n" }}
169
+ {{- "// If `id` is a string, it is treated as a fully qualified URL associated with `source`.\n" }}
170
+ {{- "// If `loc` is not provided, the viewport will be positioned at the beginning of the document or centered on the most relevant passage, if available.\n" }}
171
+ {{- "// Use this function without `id` to scroll to a new location of an opened page.\n" }}
172
+ {{- "type open = (_: {\n" }}
173
+ {{- "id?: number | string, // default: -1\n" }}
174
+ {{- "cursor?: number, // default: -1\n" }}
175
+ {{- "loc?: number, // default: -1\n" }}
176
+ {{- "num_lines?: number, // default: -1\n" }}
177
+ {{- "view_source?: boolean, // default: false\n" }}
178
+ {{- "source?: string,\n" }}
179
+ {{- "}) => any;\n\n" }}
180
+ {{- "// Finds exact matches of `pattern` in the current page, or the page given by `cursor`.\n" }}
181
+ {{- "type find = (_: {\n" }}
182
+ {{- "pattern: string,\n" }}
183
+ {{- "cursor?: number, // default: -1\n" }}
184
+ {{- "}) => any;\n\n" }}
185
+ {{- "} // namespace browser\n\n" }}
186
+ {%- endif -%}
187
+
188
+ {%- if python_tool %}
189
+ {{- "## python\n\n" }}
190
+ {{- "Use this tool to execute Python code in your chain of thought. The code will not be shown to the user. This tool should be used for internal reasoning, but not for code that is intended to be visible to the user (e.g. when creating plots, tables, or files).\n\n" }}
191
+ {{- "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 120.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is UNKNOWN. Depends on the cluster.\n\n" }}
192
+ {%- endif -%}
193
+ {%- endmacro -%}
194
+
195
+ {#- System Message Construction ============================================ #}
196
+ {%- macro build_system_message() -%}
197
+ {%- if model_identity is not defined %}
198
+ {%- set model_identity = "You are ChatGPT, a large language model trained by OpenAI." %}
199
+ {%- endif %}
200
+ {{- model_identity + "\n" }}
201
+ {{- "Knowledge cutoff: 2024-06\n" }}
202
+ {{- "Current date: " + strftime_now("%Y-%m-%d") + "\n\n" }}
203
+ {%- if reasoning_effort is not defined %}
204
+ {%- set reasoning_effort = "medium" %}
205
+ {%- endif %}
206
+ {{- "Reasoning: " + reasoning_effort + "\n\n" }}
207
+
208
+ # Code Formatting Policy
209
+ All code outputs MUST be wrapped in triple backticks and specify the language.
210
+ For Python code, always use:
211
+ ```python
212
+ # your code here
213
+ ```
214
+ - Never output code without the code block formatting.
215
+ - If the task is to generate code, always start your response with the code block.
216
+ - If the code is split across multiple blocks, each block must be properly wrapped.
217
+ - Do not include any explanation or text outside the code block unless **explicitly** requested.
218
+
219
+ {%- if builtin_tools %}
220
+ {{- "# Tools\n\n" }}
221
+ {%- set available_builtin_tools = namespace(browser=false, python=false) %}
222
+ {%- for tool in builtin_tools %}
223
+ {%- if tool == "browser" %}
224
+ {%- set available_builtin_tools.browser = true %}
225
+ {%- elif tool == "python" %}
226
+ {%- set available_builtin_tools.python = true %}
227
+ {%- endif %}
228
+ {%- endfor %}
229
+ {{- render_builtin_tools(available_builtin_tools.browser, available_builtin_tools.python) }}
230
+ {%- endif -%}
231
+ {{- "# Valid channels: analysis, commentary, final. Channel must be included for every message." }}
232
+ {%- if tools -%}
233
+ {{- "\nCalls to these tools must go to the commentary channel: 'functions'." }}
234
+ {%- endif -%}
235
+ {%- endmacro -%}
236
+
237
+
238
+ {#- Main Template Logic ================================================= #}
239
+ {#- Set defaults #}
240
+
241
+ {#- Render system message #}
242
+ {{- "<|start|>system<|message|>" }}
243
+ {{- build_system_message() }}
244
+ {{- "<|end|>" }}
245
+
246
+ {#- Extract developer message #}
247
+ {%- if messages[0].role == "developer" or messages[0].role == "system" %}
248
+ {%- set developer_message = messages[0].content %}
249
+ {%- set loop_messages = messages[1:] %}
250
+ {%- else %}
251
+ {%- set developer_message = "" %}
252
+ {%- set loop_messages = messages %}
253
+ {%- endif %}
254
+
255
+ {#- Render developer message #}
256
+ {%- if developer_message or tools %}
257
+ {{- "<|start|>developer<|message|>" }}
258
+ {%- if developer_message %}
259
+ {{- "# Instructions\n\n" }}
260
+ {{- developer_message }}
261
+ {{- "\n\n" }}
262
+ {%- endif %}
263
+ {%- if tools -%}
264
+ {{- "# Tools\n\n" }}
265
+ {{- render_tool_namespace("functions", tools) }}
266
+ {%- endif -%}
267
+ {{- "<|end|>" }}
268
+ {%- endif %}
269
+
270
+ {#- Render messages #}
271
+ {%- set last_tool_call = namespace(name=none) %}
272
+ {%- for message in loop_messages -%}
273
+ {#- At this point only assistant/user/tool messages should remain #}
274
+ {%- if message.role == 'assistant' -%}
275
+ {#- Checks to ensure the messages are being passed in the format we expect #}
276
+ {%- if "content" in message %}
277
+ {%- if "<|channel|>analysis<|message|>" in message.content or "<|channel|>final<|message|>" in message.content %}
278
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the content field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
279
+ {%- endif %}
280
+ {%- endif %}
281
+ {%- if "thinking" in message %}
282
+ {%- if "<|channel|>analysis<|message|>" in message.thinking or "<|channel|>final<|message|>" in message.thinking %}
283
+ {{- raise_exception("You have passed a message containing <|channel|> tags in the thinking field. Instead of doing this, you should pass analysis messages (the string between '<|message|>' and '<|end|>') in the 'thinking' field, and final messages (the string between '<|message|>' and '<|end|>') in the 'content' field.") }}
284
+ {%- endif %}
285
+ {%- endif %}
286
+ {%- if "tool_calls" in message %}
287
+ {#- We need very careful handling here - we want to drop the tool call analysis message if the model #}
288
+ {#- has output a later <|final|> message, but otherwise we want to retain it. This is the only case #}
289
+ {#- when we render CoT/analysis messages in inference. #}
290
+ {%- set future_final_message = namespace(found=false) %}
291
+ {%- for future_message in loop_messages[loop.index:] %}
292
+ {%- if future_message.role == 'assistant' and "tool_calls" not in future_message %}
293
+ {%- set future_final_message.found = true %}
294
+ {%- endif %}
295
+ {%- endfor %}
296
+ {#- We assume max 1 tool call per message, and so we infer the tool call name #}
297
+ {#- in "tool" messages from the most recent assistant tool call name #}
298
+ {%- set tool_call = message.tool_calls[0] %}
299
+ {%- if tool_call.function %}
300
+ {%- set tool_call = tool_call.function %}
301
+ {%- endif %}
302
+ {%- if message.content and message.thinking %}
303
+ {{- raise_exception("Cannot pass both content and thinking in an assistant message with tool calls! Put the analysis message in one or the other, but not both.") }}
304
+ {%- elif message.content and not future_final_message.found %}
305
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.content + "<|end|>" }}
306
+ {%- elif message.thinking and not future_final_message.found %}
307
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
308
+ {%- endif %}
309
+ {{- "<|start|>assistant to=" }}
310
+ {{- "functions." + tool_call.name + "<|channel|>commentary " }}
311
+ {{- (tool_call.content_type if tool_call.content_type is defined else "json") + "<|message|>" }}
312
+ {{- tool_call.arguments|tojson }}
313
+ {{- "<|call|>" }}
314
+ {%- set last_tool_call.name = tool_call.name %}
315
+ {%- elif loop.last and not add_generation_prompt %}
316
+ {#- Only render the CoT if the final turn is an assistant turn and add_generation_prompt is false #}
317
+ {#- This is a situation that should only occur in training, never in inference. #}
318
+ {%- if "thinking" in message %}
319
+ {{- "<|start|>assistant<|channel|>analysis<|message|>" + message.thinking + "<|end|>" }}
320
+ {%- endif %}
321
+ {#- <|return|> indicates the end of generation, but <|end|> does not #}
322
+ {#- <|return|> should never be an input to the model, but we include it as the final token #}
323
+ {#- when training, so the model learns to emit it. #}
324
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|return|>" }}
325
+ {%- else %}
326
+ {#- CoT is dropped during all previous turns, so we never render it for inference #}
327
+ {{- "<|start|>assistant<|channel|>final<|message|>" + message.content + "<|end|>" }}
328
+ {%- set last_tool_call.name = none %}
329
+ {%- endif %}
330
+ {%- elif message.role == 'tool' -%}
331
+ {%- if last_tool_call.name is none %}
332
+ {{- raise_exception("Message has tool role, but there was no previous assistant message with a tool call!") }}
333
+ {%- endif %}
334
+ {{- "<|start|>functions." + last_tool_call.name }}
335
+ {{- " to=assistant<|channel|>commentary<|message|>" + message.content|tojson + "<|end|>" }}
336
+ {%- elif message.role == 'user' -%}
337
+ {{- "<|start|>user<|message|>" + message.content + "<|end|>" }}
338
+ {%- endif -%}
339
+ {%- endfor -%}
340
+
341
+ {#- Generation prompt #}
342
+ {%- if add_generation_prompt -%}
343
+ <|start|>assistant
344
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "GptOssForCausalLM"
4
+ ],
5
+ "attention_bias": true,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 200002,
8
+ "experts_per_token": 4,
9
+ "head_dim": 64,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2880,
12
+ "initial_context_length": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 2880,
15
+ "layer_types": [
16
+ "sliding_attention",
17
+ "full_attention",
18
+ "sliding_attention",
19
+ "full_attention",
20
+ "sliding_attention",
21
+ "full_attention",
22
+ "sliding_attention",
23
+ "full_attention",
24
+ "sliding_attention",
25
+ "full_attention",
26
+ "sliding_attention",
27
+ "full_attention",
28
+ "sliding_attention",
29
+ "full_attention",
30
+ "sliding_attention",
31
+ "full_attention",
32
+ "sliding_attention",
33
+ "full_attention",
34
+ "sliding_attention",
35
+ "full_attention",
36
+ "sliding_attention",
37
+ "full_attention",
38
+ "sliding_attention",
39
+ "full_attention"
40
+ ],
41
+ "max_position_embeddings": 131072,
42
+ "model_type": "gpt_oss",
43
+ "num_attention_heads": 64,
44
+ "num_experts_per_tok": 4,
45
+ "num_hidden_layers": 24,
46
+ "num_key_value_heads": 8,
47
+ "num_local_experts": 32,
48
+ "output_router_logits": false,
49
+ "pad_token_id": 199999,
50
+ "quantization_config": {
51
+ "modules_to_not_convert": [
52
+ "model.layers.*.self_attn",
53
+ "model.layers.*.mlp.router",
54
+ "model.embed_tokens",
55
+ "lm_head"
56
+ ],
57
+ "quant_method": "mxfp4"
58
+ },
59
+ "rms_norm_eps": 1e-05,
60
+ "rope_scaling": {
61
+ "beta_fast": 32.0,
62
+ "beta_slow": 1.0,
63
+ "factor": 32.0,
64
+ "original_max_position_embeddings": 4096,
65
+ "rope_type": "yarn",
66
+ "truncate": false
67
+ },
68
+ "rope_theta": 150000,
69
+ "router_aux_loss_coef": 0.9,
70
+ "sliding_window": 128,
71
+ "swiglu_limit": 7.0,
72
+ "tie_word_embeddings": false,
73
+ "transformers_version": "4.55.0.dev0",
74
+ "use_cache": true,
75
+ "vocab_size": 201088
76
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 199998,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 200002,
6
+ 199999
7
+ ],
8
+ "pad_token_id": 199999,
9
+ "transformers_version": "4.55.0.dev0"
10
+ }
metal/model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:725b7f996b5a226d922f034a731aefc398652f670dcafc2efd78620509a0fef1
3
+ size 13750886400
model-00000-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16d0f997dcfc4462089d536bffe51b4bcea2f872f5c430be09ef8ed392312427
3
+ size 4792272488
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fbe328ab445455d6f58dc73852b85873bd626986310abd91cd4d2ce3245eaea
3
+ size 4798702184
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a18106b209e9ab35c3406db4f6f12a927364a058b21e9d1373d682e20674b303
3
+ size 4170342232
model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"total_size": 13761264768}, "weight_map": {"model.layers.0.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.0.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.0.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.0.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.0.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.0.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.0.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.0.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.0.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.0.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.1.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.1.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.1.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.1.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.1.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.1.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.1.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.1.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.1.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.1.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.10.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.10.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.10.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.10.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.10.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.10.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.10.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.10.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.10.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.10.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.11.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.11.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.11.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.11.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.11.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.11.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.11.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.11.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.11.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.11.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.12.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.12.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.12.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.12.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.12.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.12.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.12.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.12.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.12.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.12.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.13.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.13.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.13.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.13.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.13.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.13.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.13.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.13.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.13.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.13.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.14.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.14.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.14.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.14.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.14.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.14.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.14.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.14.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.14.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.14.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.15.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.15.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.15.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.15.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.15.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.15.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.15.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.15.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.15.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.15.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.16.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.16.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.16.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.16.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.16.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.16.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.16.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.16.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.16.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.16.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.17.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00000-of-00002.safetensors", "model.layers.17.self_attn.sinks": "model-00000-of-00002.safetensors", "model.layers.17.mlp.router.bias": "model-00000-of-00002.safetensors", "model.layers.17.mlp.router.weight": "model-00000-of-00002.safetensors", "model.layers.17.mlp.experts.gate_up_proj_bias": "model-00000-of-00002.safetensors", "model.layers.17.mlp.experts.gate_up_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.17.mlp.experts.gate_up_proj_scales": "model-00000-of-00002.safetensors", "model.layers.17.mlp.experts.down_proj_bias": "model-00000-of-00002.safetensors", "model.layers.17.mlp.experts.down_proj_blocks": "model-00000-of-00002.safetensors", "model.layers.17.mlp.experts.down_proj_scales": "model-00000-of-00002.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.18.input_layernorm.weight": "model-00000-of-00002.safetensors", "model.layers.18.self_attn.o_proj.bias": "model-00000-of-00002.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00000-of-00002.safetensors", "model.layers.18.self_attn.q_proj.bias": "model-00000-of-00002.safetensors", "model.layers.18.self_attn.k_proj.bias": "model-00000-of-00002.safetensors", "model.layers.18.self_attn.v_proj.bias": "model-00000-of-00002.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.18.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.18.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.18.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.18.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.18.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.18.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.18.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.18.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.18.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.19.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.19.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.19.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.19.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.19.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.19.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.19.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.19.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.19.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.2.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.2.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.2.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.2.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.2.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.2.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.2.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.2.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.2.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.20.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.20.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.20.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.20.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.20.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.20.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.20.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.20.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.20.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.21.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.21.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.21.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.21.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.21.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.21.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.21.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.21.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.21.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.22.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.22.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.22.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.22.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.22.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.22.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.22.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.22.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.22.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.23.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.23.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.23.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.23.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.23.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.23.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.23.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.23.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.23.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.3.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.3.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.3.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.3.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.3.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.3.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.3.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.3.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.3.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.4.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.4.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.4.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.4.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.4.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.4.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.4.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.4.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.4.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.5.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.5.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.5.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.5.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.5.mlp.experts.gate_up_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.5.mlp.experts.gate_up_proj_scales": "model-00001-of-00002.safetensors", "model.layers.5.mlp.experts.down_proj_bias": "model-00001-of-00002.safetensors", "model.layers.5.mlp.experts.down_proj_blocks": "model-00001-of-00002.safetensors", "model.layers.5.mlp.experts.down_proj_scales": "model-00001-of-00002.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.o_proj.bias": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors", "model.layers.6.self_attn.sinks": "model-00001-of-00002.safetensors", "model.layers.6.mlp.router.bias": "model-00001-of-00002.safetensors", "model.layers.6.mlp.router.weight": "model-00001-of-00002.safetensors", "model.layers.6.mlp.experts.gate_up_proj_bias": "model-00001-of-00002.safetensors", "model.layers.6.mlp.experts.gate_up_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.6.mlp.experts.gate_up_proj_scales": "model-00002-of-00002.safetensors", "model.layers.6.mlp.experts.down_proj_bias": "model-00002-of-00002.safetensors", "model.layers.6.mlp.experts.down_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.6.mlp.experts.down_proj_scales": "model-00002-of-00002.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.7.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.o_proj.bias": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.7.self_attn.sinks": "model-00002-of-00002.safetensors", "model.layers.7.mlp.router.bias": "model-00002-of-00002.safetensors", "model.layers.7.mlp.router.weight": "model-00002-of-00002.safetensors", "model.layers.7.mlp.experts.gate_up_proj_bias": "model-00002-of-00002.safetensors", "model.layers.7.mlp.experts.gate_up_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.7.mlp.experts.gate_up_proj_scales": "model-00002-of-00002.safetensors", "model.layers.7.mlp.experts.down_proj_bias": "model-00002-of-00002.safetensors", "model.layers.7.mlp.experts.down_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.7.mlp.experts.down_proj_scales": "model-00002-of-00002.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.8.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.o_proj.bias": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.8.self_attn.sinks": "model-00002-of-00002.safetensors", "model.layers.8.mlp.router.bias": "model-00002-of-00002.safetensors", "model.layers.8.mlp.router.weight": "model-00002-of-00002.safetensors", "model.layers.8.mlp.experts.gate_up_proj_bias": "model-00002-of-00002.safetensors", "model.layers.8.mlp.experts.gate_up_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.8.mlp.experts.gate_up_proj_scales": "model-00002-of-00002.safetensors", "model.layers.8.mlp.experts.down_proj_bias": "model-00002-of-00002.safetensors", "model.layers.8.mlp.experts.down_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.8.mlp.experts.down_proj_scales": "model-00002-of-00002.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.9.input_layernorm.weight": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.o_proj.bias": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00002.safetensors", "model.layers.9.self_attn.sinks": "model-00002-of-00002.safetensors", "model.layers.9.mlp.router.bias": "model-00002-of-00002.safetensors", "model.layers.9.mlp.router.weight": "model-00002-of-00002.safetensors", "model.layers.9.mlp.experts.gate_up_proj_bias": "model-00002-of-00002.safetensors", "model.layers.9.mlp.experts.gate_up_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.9.mlp.experts.gate_up_proj_scales": "model-00002-of-00002.safetensors", "model.layers.9.mlp.experts.down_proj_bias": "model-00002-of-00002.safetensors", "model.layers.9.mlp.experts.down_proj_blocks": "model-00002-of-00002.safetensors", "model.layers.9.mlp.experts.down_proj_scales": "model-00002-of-00002.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00002.safetensors", "model.embed_tokens.weight": "model-00002-of-00002.safetensors", "model.norm.weight": "model-00002-of-00002.safetensors", "lm_head.weight": "model-00002-of-00002.safetensors"}}
original/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"num_hidden_layers": 24, "num_experts": 32, "experts_per_token": 4, "vocab_size": 201088, "hidden_size": 2880, "intermediate_size": 2880, "swiglu_limit": 7.0, "head_dim": 64, "num_attention_heads": 64, "num_key_value_heads": 8, "sliding_window": 128, "initial_context_length": 4096, "rope_theta": 150000, "rope_scaling_factor": 32.0, "rope_ntk_alpha": 1, "rope_ntk_beta": 32}
original/dtypes.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"embedding.weight": "BF16", "block.0.attn.norm.scale": "BF16", "block.0.attn.qkv.weight": "BF16", "block.0.attn.qkv.bias": "BF16", "block.0.attn.sinks": "BF16", "block.0.attn.out.weight": "BF16", "block.0.attn.out.bias": "BF16", "block.0.mlp.norm.scale": "BF16", "block.0.mlp.gate.weight": "BF16", "block.0.mlp.gate.bias": "BF16", "block.0.mlp.mlp1_weight.blocks": "FP4", "block.0.mlp.mlp1_weight.scales": "UE8", "block.0.mlp.mlp1_bias": "BF16", "block.0.mlp.mlp2_weight.blocks": "FP4", "block.0.mlp.mlp2_weight.scales": "UE8", "block.0.mlp.mlp2_bias": "BF16", "block.1.attn.norm.scale": "BF16", "block.1.attn.qkv.weight": "BF16", "block.1.attn.qkv.bias": "BF16", "block.1.attn.sinks": "BF16", "block.1.attn.out.weight": "BF16", "block.1.attn.out.bias": "BF16", "block.1.mlp.norm.scale": "BF16", "block.1.mlp.gate.weight": "BF16", "block.1.mlp.gate.bias": "BF16", "block.1.mlp.mlp1_weight.blocks": "FP4", "block.1.mlp.mlp1_weight.scales": "UE8", "block.1.mlp.mlp1_bias": "BF16", "block.1.mlp.mlp2_weight.blocks": "FP4", "block.1.mlp.mlp2_weight.scales": "UE8", "block.1.mlp.mlp2_bias": "BF16", "block.2.attn.norm.scale": "BF16", "block.2.attn.qkv.weight": "BF16", "block.2.attn.qkv.bias": "BF16", "block.2.attn.sinks": "BF16", "block.2.attn.out.weight": "BF16", "block.2.attn.out.bias": "BF16", "block.2.mlp.norm.scale": "BF16", "block.2.mlp.gate.weight": "BF16", "block.2.mlp.gate.bias": "BF16", "block.2.mlp.mlp1_weight.blocks": "FP4", "block.2.mlp.mlp1_weight.scales": "UE8", "block.2.mlp.mlp1_bias": "BF16", "block.2.mlp.mlp2_weight.blocks": "FP4", "block.2.mlp.mlp2_weight.scales": "UE8", "block.2.mlp.mlp2_bias": "BF16", "block.3.attn.norm.scale": "BF16", "block.3.attn.qkv.weight": "BF16", "block.3.attn.qkv.bias": "BF16", "block.3.attn.sinks": "BF16", "block.3.attn.out.weight": "BF16", "block.3.attn.out.bias": "BF16", "block.3.mlp.norm.scale": "BF16", "block.3.mlp.gate.weight": "BF16", "block.3.mlp.gate.bias": "BF16", "block.3.mlp.mlp1_weight.blocks": "FP4", "block.3.mlp.mlp1_weight.scales": "UE8", "block.3.mlp.mlp1_bias": "BF16", "block.3.mlp.mlp2_weight.blocks": "FP4", "block.3.mlp.mlp2_weight.scales": "UE8", "block.3.mlp.mlp2_bias": "BF16", "block.4.attn.norm.scale": "BF16", "block.4.attn.qkv.weight": "BF16", "block.4.attn.qkv.bias": "BF16", "block.4.attn.sinks": "BF16", "block.4.attn.out.weight": "BF16", "block.4.attn.out.bias": "BF16", "block.4.mlp.norm.scale": "BF16", "block.4.mlp.gate.weight": "BF16", "block.4.mlp.gate.bias": "BF16", "block.4.mlp.mlp1_weight.blocks": "FP4", "block.4.mlp.mlp1_weight.scales": "UE8", "block.4.mlp.mlp1_bias": "BF16", "block.4.mlp.mlp2_weight.blocks": "FP4", "block.4.mlp.mlp2_weight.scales": "UE8", "block.4.mlp.mlp2_bias": "BF16", "block.5.attn.norm.scale": "BF16", "block.5.attn.qkv.weight": "BF16", "block.5.attn.qkv.bias": "BF16", "block.5.attn.sinks": "BF16", "block.5.attn.out.weight": "BF16", "block.5.attn.out.bias": "BF16", "block.5.mlp.norm.scale": "BF16", "block.5.mlp.gate.weight": "BF16", "block.5.mlp.gate.bias": "BF16", "block.5.mlp.mlp1_weight.blocks": "FP4", "block.5.mlp.mlp1_weight.scales": "UE8", "block.5.mlp.mlp1_bias": "BF16", "block.5.mlp.mlp2_weight.blocks": "FP4", "block.5.mlp.mlp2_weight.scales": "UE8", "block.5.mlp.mlp2_bias": "BF16", "block.6.attn.norm.scale": "BF16", "block.6.attn.qkv.weight": "BF16", "block.6.attn.qkv.bias": "BF16", "block.6.attn.sinks": "BF16", "block.6.attn.out.weight": "BF16", "block.6.attn.out.bias": "BF16", "block.6.mlp.norm.scale": "BF16", "block.6.mlp.gate.weight": "BF16", "block.6.mlp.gate.bias": "BF16", "block.6.mlp.mlp1_weight.blocks": "FP4", "block.6.mlp.mlp1_weight.scales": "UE8", "block.6.mlp.mlp1_bias": "BF16", "block.6.mlp.mlp2_weight.blocks": "FP4", "block.6.mlp.mlp2_weight.scales": "UE8", "block.6.mlp.mlp2_bias": "BF16", "block.7.attn.norm.scale": "BF16", "block.7.attn.qkv.weight": "BF16", "block.7.attn.qkv.bias": "BF16", "block.7.attn.sinks": "BF16", "block.7.attn.out.weight": "BF16", "block.7.attn.out.bias": "BF16", "block.7.mlp.norm.scale": "BF16", "block.7.mlp.gate.weight": "BF16", "block.7.mlp.gate.bias": "BF16", "block.7.mlp.mlp1_weight.blocks": "FP4", "block.7.mlp.mlp1_weight.scales": "UE8", "block.7.mlp.mlp1_bias": "BF16", "block.7.mlp.mlp2_weight.blocks": "FP4", "block.7.mlp.mlp2_weight.scales": "UE8", "block.7.mlp.mlp2_bias": "BF16", "block.8.attn.norm.scale": "BF16", "block.8.attn.qkv.weight": "BF16", "block.8.attn.qkv.bias": "BF16", "block.8.attn.sinks": "BF16", "block.8.attn.out.weight": "BF16", "block.8.attn.out.bias": "BF16", "block.8.mlp.norm.scale": "BF16", "block.8.mlp.gate.weight": "BF16", "block.8.mlp.gate.bias": "BF16", "block.8.mlp.mlp1_weight.blocks": "FP4", "block.8.mlp.mlp1_weight.scales": "UE8", "block.8.mlp.mlp1_bias": "BF16", "block.8.mlp.mlp2_weight.blocks": "FP4", "block.8.mlp.mlp2_weight.scales": "UE8", "block.8.mlp.mlp2_bias": "BF16", "block.9.attn.norm.scale": "BF16", "block.9.attn.qkv.weight": "BF16", "block.9.attn.qkv.bias": "BF16", "block.9.attn.sinks": "BF16", "block.9.attn.out.weight": "BF16", "block.9.attn.out.bias": "BF16", "block.9.mlp.norm.scale": "BF16", "block.9.mlp.gate.weight": "BF16", "block.9.mlp.gate.bias": "BF16", "block.9.mlp.mlp1_weight.blocks": "FP4", "block.9.mlp.mlp1_weight.scales": "UE8", "block.9.mlp.mlp1_bias": "BF16", "block.9.mlp.mlp2_weight.blocks": "FP4", "block.9.mlp.mlp2_weight.scales": "UE8", "block.9.mlp.mlp2_bias": "BF16", "block.10.attn.norm.scale": "BF16", "block.10.attn.qkv.weight": "BF16", "block.10.attn.qkv.bias": "BF16", "block.10.attn.sinks": "BF16", "block.10.attn.out.weight": "BF16", "block.10.attn.out.bias": "BF16", "block.10.mlp.norm.scale": "BF16", "block.10.mlp.gate.weight": "BF16", "block.10.mlp.gate.bias": "BF16", "block.10.mlp.mlp1_weight.blocks": "FP4", "block.10.mlp.mlp1_weight.scales": "UE8", "block.10.mlp.mlp1_bias": "BF16", "block.10.mlp.mlp2_weight.blocks": "FP4", "block.10.mlp.mlp2_weight.scales": "UE8", "block.10.mlp.mlp2_bias": "BF16", "block.11.attn.norm.scale": "BF16", "block.11.attn.qkv.weight": "BF16", "block.11.attn.qkv.bias": "BF16", "block.11.attn.sinks": "BF16", "block.11.attn.out.weight": "BF16", "block.11.attn.out.bias": "BF16", "block.11.mlp.norm.scale": "BF16", "block.11.mlp.gate.weight": "BF16", "block.11.mlp.gate.bias": "BF16", "block.11.mlp.mlp1_weight.blocks": "FP4", "block.11.mlp.mlp1_weight.scales": "UE8", "block.11.mlp.mlp1_bias": "BF16", "block.11.mlp.mlp2_weight.blocks": "FP4", "block.11.mlp.mlp2_weight.scales": "UE8", "block.11.mlp.mlp2_bias": "BF16", "block.12.attn.norm.scale": "BF16", "block.12.attn.qkv.weight": "BF16", "block.12.attn.qkv.bias": "BF16", "block.12.attn.sinks": "BF16", "block.12.attn.out.weight": "BF16", "block.12.attn.out.bias": "BF16", "block.12.mlp.norm.scale": "BF16", "block.12.mlp.gate.weight": "BF16", "block.12.mlp.gate.bias": "BF16", "block.12.mlp.mlp1_weight.blocks": "FP4", "block.12.mlp.mlp1_weight.scales": "UE8", "block.12.mlp.mlp1_bias": "BF16", "block.12.mlp.mlp2_weight.blocks": "FP4", "block.12.mlp.mlp2_weight.scales": "UE8", "block.12.mlp.mlp2_bias": "BF16", "block.13.attn.norm.scale": "BF16", "block.13.attn.qkv.weight": "BF16", "block.13.attn.qkv.bias": "BF16", "block.13.attn.sinks": "BF16", "block.13.attn.out.weight": "BF16", "block.13.attn.out.bias": "BF16", "block.13.mlp.norm.scale": "BF16", "block.13.mlp.gate.weight": "BF16", "block.13.mlp.gate.bias": "BF16", "block.13.mlp.mlp1_weight.blocks": "FP4", "block.13.mlp.mlp1_weight.scales": "UE8", "block.13.mlp.mlp1_bias": "BF16", "block.13.mlp.mlp2_weight.blocks": "FP4", "block.13.mlp.mlp2_weight.scales": "UE8", "block.13.mlp.mlp2_bias": "BF16", "block.14.attn.norm.scale": "BF16", "block.14.attn.qkv.weight": "BF16", "block.14.attn.qkv.bias": "BF16", "block.14.attn.sinks": "BF16", "block.14.attn.out.weight": "BF16", "block.14.attn.out.bias": "BF16", "block.14.mlp.norm.scale": "BF16", "block.14.mlp.gate.weight": "BF16", "block.14.mlp.gate.bias": "BF16", "block.14.mlp.mlp1_weight.blocks": "FP4", "block.14.mlp.mlp1_weight.scales": "UE8", "block.14.mlp.mlp1_bias": "BF16", "block.14.mlp.mlp2_weight.blocks": "FP4", "block.14.mlp.mlp2_weight.scales": "UE8", "block.14.mlp.mlp2_bias": "BF16", "block.15.attn.norm.scale": "BF16", "block.15.attn.qkv.weight": "BF16", "block.15.attn.qkv.bias": "BF16", "block.15.attn.sinks": "BF16", "block.15.attn.out.weight": "BF16", "block.15.attn.out.bias": "BF16", "block.15.mlp.norm.scale": "BF16", "block.15.mlp.gate.weight": "BF16", "block.15.mlp.gate.bias": "BF16", "block.15.mlp.mlp1_weight.blocks": "FP4", "block.15.mlp.mlp1_weight.scales": "UE8", "block.15.mlp.mlp1_bias": "BF16", "block.15.mlp.mlp2_weight.blocks": "FP4", "block.15.mlp.mlp2_weight.scales": "UE8", "block.15.mlp.mlp2_bias": "BF16", "block.16.attn.norm.scale": "BF16", "block.16.attn.qkv.weight": "BF16", "block.16.attn.qkv.bias": "BF16", "block.16.attn.sinks": "BF16", "block.16.attn.out.weight": "BF16", "block.16.attn.out.bias": "BF16", "block.16.mlp.norm.scale": "BF16", "block.16.mlp.gate.weight": "BF16", "block.16.mlp.gate.bias": "BF16", "block.16.mlp.mlp1_weight.blocks": "FP4", "block.16.mlp.mlp1_weight.scales": "UE8", "block.16.mlp.mlp1_bias": "BF16", "block.16.mlp.mlp2_weight.blocks": "FP4", "block.16.mlp.mlp2_weight.scales": "UE8", "block.16.mlp.mlp2_bias": "BF16", "block.17.attn.norm.scale": "BF16", "block.17.attn.qkv.weight": "BF16", "block.17.attn.qkv.bias": "BF16", "block.17.attn.sinks": "BF16", "block.17.attn.out.weight": "BF16", "block.17.attn.out.bias": "BF16", "block.17.mlp.norm.scale": "BF16", "block.17.mlp.gate.weight": "BF16", "block.17.mlp.gate.bias": "BF16", "block.17.mlp.mlp1_weight.blocks": "FP4", "block.17.mlp.mlp1_weight.scales": "UE8", "block.17.mlp.mlp1_bias": "BF16", "block.17.mlp.mlp2_weight.blocks": "FP4", "block.17.mlp.mlp2_weight.scales": "UE8", "block.17.mlp.mlp2_bias": "BF16", "block.18.attn.norm.scale": "BF16", "block.18.attn.qkv.weight": "BF16", "block.18.attn.qkv.bias": "BF16", "block.18.attn.sinks": "BF16", "block.18.attn.out.weight": "BF16", "block.18.attn.out.bias": "BF16", "block.18.mlp.norm.scale": "BF16", "block.18.mlp.gate.weight": "BF16", "block.18.mlp.gate.bias": "BF16", "block.18.mlp.mlp1_weight.blocks": "FP4", "block.18.mlp.mlp1_weight.scales": "UE8", "block.18.mlp.mlp1_bias": "BF16", "block.18.mlp.mlp2_weight.blocks": "FP4", "block.18.mlp.mlp2_weight.scales": "UE8", "block.18.mlp.mlp2_bias": "BF16", "block.19.attn.norm.scale": "BF16", "block.19.attn.qkv.weight": "BF16", "block.19.attn.qkv.bias": "BF16", "block.19.attn.sinks": "BF16", "block.19.attn.out.weight": "BF16", "block.19.attn.out.bias": "BF16", "block.19.mlp.norm.scale": "BF16", "block.19.mlp.gate.weight": "BF16", "block.19.mlp.gate.bias": "BF16", "block.19.mlp.mlp1_weight.blocks": "FP4", "block.19.mlp.mlp1_weight.scales": "UE8", "block.19.mlp.mlp1_bias": "BF16", "block.19.mlp.mlp2_weight.blocks": "FP4", "block.19.mlp.mlp2_weight.scales": "UE8", "block.19.mlp.mlp2_bias": "BF16", "block.20.attn.norm.scale": "BF16", "block.20.attn.qkv.weight": "BF16", "block.20.attn.qkv.bias": "BF16", "block.20.attn.sinks": "BF16", "block.20.attn.out.weight": "BF16", "block.20.attn.out.bias": "BF16", "block.20.mlp.norm.scale": "BF16", "block.20.mlp.gate.weight": "BF16", "block.20.mlp.gate.bias": "BF16", "block.20.mlp.mlp1_weight.blocks": "FP4", "block.20.mlp.mlp1_weight.scales": "UE8", "block.20.mlp.mlp1_bias": "BF16", "block.20.mlp.mlp2_weight.blocks": "FP4", "block.20.mlp.mlp2_weight.scales": "UE8", "block.20.mlp.mlp2_bias": "BF16", "block.21.attn.norm.scale": "BF16", "block.21.attn.qkv.weight": "BF16", "block.21.attn.qkv.bias": "BF16", "block.21.attn.sinks": "BF16", "block.21.attn.out.weight": "BF16", "block.21.attn.out.bias": "BF16", "block.21.mlp.norm.scale": "BF16", "block.21.mlp.gate.weight": "BF16", "block.21.mlp.gate.bias": "BF16", "block.21.mlp.mlp1_weight.blocks": "FP4", "block.21.mlp.mlp1_weight.scales": "UE8", "block.21.mlp.mlp1_bias": "BF16", "block.21.mlp.mlp2_weight.blocks": "FP4", "block.21.mlp.mlp2_weight.scales": "UE8", "block.21.mlp.mlp2_bias": "BF16", "block.22.attn.norm.scale": "BF16", "block.22.attn.qkv.weight": "BF16", "block.22.attn.qkv.bias": "BF16", "block.22.attn.sinks": "BF16", "block.22.attn.out.weight": "BF16", "block.22.attn.out.bias": "BF16", "block.22.mlp.norm.scale": "BF16", "block.22.mlp.gate.weight": "BF16", "block.22.mlp.gate.bias": "BF16", "block.22.mlp.mlp1_weight.blocks": "FP4", "block.22.mlp.mlp1_weight.scales": "UE8", "block.22.mlp.mlp1_bias": "BF16", "block.22.mlp.mlp2_weight.blocks": "FP4", "block.22.mlp.mlp2_weight.scales": "UE8", "block.22.mlp.mlp2_bias": "BF16", "block.23.attn.norm.scale": "BF16", "block.23.attn.qkv.weight": "BF16", "block.23.attn.qkv.bias": "BF16", "block.23.attn.sinks": "BF16", "block.23.attn.out.weight": "BF16", "block.23.attn.out.bias": "BF16", "block.23.mlp.norm.scale": "BF16", "block.23.mlp.gate.weight": "BF16", "block.23.mlp.gate.bias": "BF16", "block.23.mlp.mlp1_weight.blocks": "FP4", "block.23.mlp.mlp1_weight.scales": "UE8", "block.23.mlp.mlp1_bias": "BF16", "block.23.mlp.mlp2_weight.blocks": "FP4", "block.23.mlp.mlp2_weight.scales": "UE8", "block.23.mlp.mlp2_bias": "BF16", "norm.scale": "BF16", "unembedding.weight": "BF16"}
original/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3340a61d1a0391e8c5b5d3463d18d4c48129a84bbc04a554c762c99020aa06ed
3
+ size 13761300984
special_tokens_map.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|startoftext|>",
3
+ "eos_token": "<|return|>",
4
+ "pad_token": "<|endoftext|>"
5
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0614fe83cadab421296e664e1f48f4261fa8fef6e03e63bb75c20f38e37d07d3
3
+ size 27868174
tokenizer_config.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "199998": {
4
+ "content": "<|startoftext|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "199999": {
12
+ "content": "<|endoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "200000": {
20
+ "content": "<|reserved_200000|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "200001": {
28
+ "content": "<|reserved_200001|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "200002": {
36
+ "content": "<|return|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "200003": {
44
+ "content": "<|constrain|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "200004": {
52
+ "content": "<|reserved_200004|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "200005": {
60
+ "content": "<|channel|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "200006": {
68
+ "content": "<|start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "200007": {
76
+ "content": "<|end|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "200008": {
84
+ "content": "<|message|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "200009": {
92
+ "content": "<|reserved_200009|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "200010": {
100
+ "content": "<|reserved_200010|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "200011": {
108
+ "content": "<|reserved_200011|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "200012": {
116
+ "content": "<|call|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "200013": {
124
+ "content": "<|reserved_200013|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "200014": {
132
+ "content": "<|reserved_200014|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "200015": {
140
+ "content": "<|reserved_200015|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "200016": {
148
+ "content": "<|reserved_200016|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "200017": {
156
+ "content": "<|reserved_200017|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "200018": {
164
+ "content": "<|endofprompt|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ }
171
+ },
172
+ "bos_token": "<|startoftext|>",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "<|return|>",
175
+ "extra_special_tokens": {},
176
+ "model_input_names": [
177
+ "input_ids",
178
+ "attention_mask"
179
+ ],
180
+ "model_max_length": 1000000000000000019884624838656,
181
+ "pad_token": "<|endoftext|>",
182
+ "tokenizer_class": "PreTrainedTokenizerFast"
183
+ }