Web4 commited on
Commit
8aa6232
·
verified ·
1 Parent(s): 8c923c5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language: en
4
+ datasets:
5
+ - adilshamim8/social-media-addiction-vs-relationships
6
+ tags:
7
+ - tabular-data
8
+ - scikit-learn
9
+ - random-forest
10
+ - classification
11
+ - addiction
12
+ - social-media
13
+ model-index:
14
+ - name: LS-W4-Mini-RF_Addiction_Impact
15
+ results:
16
+ - task:
17
+ name: Tabular Classification
18
+ type: tabular-classification
19
+ dataset:
20
+ name: Students Social Media Addiction
21
+ type: adilshamim8/social-media-addiction-vs-relationships
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.93
26
+ ---
27
+
28
+ # LS-W4-Mini-RF_Addiction_Impact
29
+
30
+ ## Model Summary
31
+
32
+ This is a **Random Forest Classifier** trained to predict whether social media use affects a student's academic performance. The model is based on the "Social Media Addiction vs. Relationships" dataset from Kaggle, which contains survey responses from students aged 16 to 25.
33
+
34
+ ## Usage
35
+
36
+ The model is packaged within a scikit-learn pipeline and can be easily loaded and used within any Python environment. It expects a pandas DataFrame with the same column structure as the original training data.
37
+
38
+ ```python
39
+ import joblib
40
+ import pandas as pd
41
+
42
+ # Load the model
43
+ model = joblib.load('LS-W4-Mini-RF_Addiction_Impact.joblib')
44
+
45
+ # Example of new data to predict on
46
+ new_data = pd.DataFrame({
47
+ 'Gender': ['Female'],
48
+ 'Academic_Level': ['Undergraduate'],
49
+ 'Most_Used_Platform': ['Instagram'],
50
+ 'Relationship_Status': ['Single'],
51
+ 'Age': [20],
52
+ 'Avg_Daily_Usage_Hours': [5.0],
53
+ 'Sleep_Hours_Per_Night': [6],
54
+ 'Mental_Health_Score': [7],
55
+ 'Addicted_Score': [8],
56
+ 'Conflicts_Over_Social_Media': [0]
57
+ })
58
+
59
+ # Make a prediction
60
+ prediction = model.predict(new_data)
61
+ print("Prediction (1 = Yes, 0 = No):", prediction)
62
+
63
+ ```
64
+
65
+ ## Training Data
66
+
67
+ The model was trained on the public dataset **[Social Media Addiction vs. Relationships](https://www.kaggle.com/datasets/adilshamim8/social-media-addiction-vs-relationships/data)**. The dataset consists of 705 records and 13 features with survey responses. The training data and the model file are available within the repository.
68
+
69
+ ## Model Details
70
+
71
+ * **Model Type**: scikit-learn `RandomForestClassifier`
72
+ * **Pipeline Structure**: The pipeline includes a `ColumnTransformer` for one-hot encoding categorical features and the `RandomForestClassifier` itself.
73
+ * **Key Hyperparameters**: `n_estimators=100`, `random_state=42`.
74
+
75
+ ## Performance
76
+
77
+ The model's performance was evaluated on a held-out test set from the original dataset.
78
+
79
+ * **Accuracy**: 0.93
80
+
81
+ ## Limitations and Ethical Considerations
82
+
83
+ * **Not a Diagnostic Tool**: This model should be used as a statistical tool for trend analysis and should **not** be used for clinical or psychological diagnosis of addiction. The data is based on self-reported survey responses.
84
+ * **Generalizability**: The model was trained on a specific sample of students and may not generalize well to other populations, age groups, or time periods.
85
+ * **Data Bias**: The model's predictions reflect the biases present in the original dataset. The results should be interpreted with caution.