File size: 1,955 Bytes
15db6aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: apache-2.0
base_model: tarteel-ai/whisper-base-ar-quran
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Base Ar Tashkeel - AzeemX
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Base Ar Tashkeel - AzeemX

This model is a fine-tuned version of [tarteel-ai/whisper-base-ar-quran](https://huggingface.co/tarteel-ai/whisper-base-ar-quran) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0762
- Wer: 11.1681

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 7000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1686        | 1.0320 | 1000 | 0.1651          | 26.5255 |
| 0.0828        | 2.0640 | 2000 | 0.1216          | 20.2028 |
| 0.0459        | 3.0960 | 3000 | 0.1020          | 16.3712 |
| 0.0237        | 4.1280 | 4000 | 0.0898          | 14.2751 |
| 0.0142        | 5.1600 | 5000 | 0.0808          | 12.4992 |
| 0.009         | 6.1920 | 6000 | 0.0772          | 11.4605 |
| 0.0054        | 7.2239 | 7000 | 0.0762          | 11.1681 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1
- Datasets 3.0.1
- Tokenizers 0.20.0