Wade5 commited on
Commit
703f1ba
·
verified ·
1 Parent(s): 9edf21e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -3
README.md CHANGED
@@ -4,6 +4,9 @@ license: mit
4
  base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
5
  tags:
6
  - generated_from_trainer
 
 
 
7
  model-index:
8
  - name: MyModel2
9
  results: []
@@ -20,11 +23,11 @@ It achieves the following results on the evaluation set:
20
 
21
  ## Model description
22
 
23
- More information needed
24
 
25
  ## Intended uses & limitations
26
 
27
- More information needed
28
 
29
  ## Training and evaluation data
30
 
@@ -67,10 +70,36 @@ The following hyperparameters were used during training:
67
  | 0.1227 | 4.5773 | 8500 | 0.1134 |
68
  | 0.1273 | 4.8465 | 9000 | 0.1089 |
69
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
- ### Framework versions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  - Transformers 4.48.2
74
  - Pytorch 2.5.1+cu124
75
  - Datasets 3.2.0
76
  - Tokenizers 0.21.0
 
 
4
  base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
5
  tags:
6
  - generated_from_trainer
7
+ - gguf
8
+ - quantized
9
+ - inference
10
  model-index:
11
  - name: MyModel2
12
  results: []
 
23
 
24
  ## Model description
25
 
26
+ This is a fine-tuned model available in both **SafeTensors** and **GGUF** formats. The GGUF version allows efficient inference with tools like `llama.cpp` and `ctransformers`.
27
 
28
  ## Intended uses & limitations
29
 
30
+ This model can be used for various natural language processing tasks. However, it may have limitations based on the dataset and fine-tuning constraints.
31
 
32
  ## Training and evaluation data
33
 
 
70
  | 0.1227 | 4.5773 | 8500 | 0.1134 |
71
  | 0.1273 | 4.8465 | 9000 | 0.1089 |
72
 
73
+ ## Inference
74
+
75
+ This model supports inference via GGUF using `llama.cpp` or `ctransformers`.
76
+
77
+ ### **Using `llama.cpp` (CLI)**
78
+ ```bash
79
+ git clone https://github.com/ggerganov/llama.cpp.git
80
+ cd llama.cpp
81
+ make -j
82
+ ./main -m first.gguf -p "Hello, how are you?"
83
+ ```
84
 
85
+ ### **Using `ctransformers` (Python)**
86
+ ```python
87
+ from ctransformers import AutoModelForCausalLM
88
+
89
+ model = AutoModelForCausalLM.from_pretrained(
90
+ "your_username/your_model_repo",
91
+ model_file="first.gguf",
92
+ model_type="llama"
93
+ )
94
+
95
+ output = model("Hello, how are you?")
96
+ print(output)
97
+ ```
98
+
99
+ ## Framework versions
100
 
101
  - Transformers 4.48.2
102
  - Pytorch 2.5.1+cu124
103
  - Datasets 3.2.0
104
  - Tokenizers 0.21.0
105
+