Update README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,9 @@ license: mit
|
|
4 |
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
5 |
tags:
|
6 |
- generated_from_trainer
|
|
|
|
|
|
|
7 |
model-index:
|
8 |
- name: MyModel2
|
9 |
results: []
|
@@ -20,11 +23,11 @@ It achieves the following results on the evaluation set:
|
|
20 |
|
21 |
## Model description
|
22 |
|
23 |
-
|
24 |
|
25 |
## Intended uses & limitations
|
26 |
|
27 |
-
|
28 |
|
29 |
## Training and evaluation data
|
30 |
|
@@ -67,10 +70,36 @@ The following hyperparameters were used during training:
|
|
67 |
| 0.1227 | 4.5773 | 8500 | 0.1134 |
|
68 |
| 0.1273 | 4.8465 | 9000 | 0.1089 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
- Transformers 4.48.2
|
74 |
- Pytorch 2.5.1+cu124
|
75 |
- Datasets 3.2.0
|
76 |
- Tokenizers 0.21.0
|
|
|
|
4 |
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
+
- gguf
|
8 |
+
- quantized
|
9 |
+
- inference
|
10 |
model-index:
|
11 |
- name: MyModel2
|
12 |
results: []
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
This is a fine-tuned model available in both **SafeTensors** and **GGUF** formats. The GGUF version allows efficient inference with tools like `llama.cpp` and `ctransformers`.
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
+
This model can be used for various natural language processing tasks. However, it may have limitations based on the dataset and fine-tuning constraints.
|
31 |
|
32 |
## Training and evaluation data
|
33 |
|
|
|
70 |
| 0.1227 | 4.5773 | 8500 | 0.1134 |
|
71 |
| 0.1273 | 4.8465 | 9000 | 0.1089 |
|
72 |
|
73 |
+
## Inference
|
74 |
+
|
75 |
+
This model supports inference via GGUF using `llama.cpp` or `ctransformers`.
|
76 |
+
|
77 |
+
### **Using `llama.cpp` (CLI)**
|
78 |
+
```bash
|
79 |
+
git clone https://github.com/ggerganov/llama.cpp.git
|
80 |
+
cd llama.cpp
|
81 |
+
make -j
|
82 |
+
./main -m first.gguf -p "Hello, how are you?"
|
83 |
+
```
|
84 |
|
85 |
+
### **Using `ctransformers` (Python)**
|
86 |
+
```python
|
87 |
+
from ctransformers import AutoModelForCausalLM
|
88 |
+
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(
|
90 |
+
"your_username/your_model_repo",
|
91 |
+
model_file="first.gguf",
|
92 |
+
model_type="llama"
|
93 |
+
)
|
94 |
+
|
95 |
+
output = model("Hello, how are you?")
|
96 |
+
print(output)
|
97 |
+
```
|
98 |
+
|
99 |
+
## Framework versions
|
100 |
|
101 |
- Transformers 4.48.2
|
102 |
- Pytorch 2.5.1+cu124
|
103 |
- Datasets 3.2.0
|
104 |
- Tokenizers 0.21.0
|
105 |
+
|