Upload folder using huggingface_hub
Browse files- README.md +1 -0
- best_model.pt +3 -0
- model_cfg.json +11 -0
- ssw_model.py +193 -0
- tokenizer.json +0 -0
README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# Structured State Weaving (SSW) – toy LM
|
best_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e26d92b032202260a30bb88b5c9adc9e6c6ae4999d340332c6845ae830737905
|
3 |
+
size 174862196
|
model_cfg.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"vocab_size": 32000,
|
3 |
+
"d_model": 384,
|
4 |
+
"n_layers": 6,
|
5 |
+
"ffn_mult": 4,
|
6 |
+
"dropout": 0.1,
|
7 |
+
"ltc_kernel": 7,
|
8 |
+
"gsp_state": 128,
|
9 |
+
"cbs_topk": 4,
|
10 |
+
"max_seq_len": 512
|
11 |
+
}
|
ssw_model.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
# ---------------------
|
8 |
+
# Utility Layers
|
9 |
+
# ---------------------
|
10 |
+
class RMSNorm(nn.Module):
|
11 |
+
def __init__(self, d: int, eps: float = 1e-6):
|
12 |
+
super().__init__()
|
13 |
+
self.eps = eps
|
14 |
+
self.weight = nn.Parameter(torch.ones(d))
|
15 |
+
def forward(self, x):
|
16 |
+
norm = x.pow(2).mean(-1, keepdim=True)
|
17 |
+
x = x * torch.rsqrt(norm + self.eps)
|
18 |
+
return self.weight * x
|
19 |
+
|
20 |
+
class FeedForward(nn.Module):
|
21 |
+
def __init__(self, d_model: int, mult: int = 4, dropout: float = 0.0):
|
22 |
+
super().__init__()
|
23 |
+
inner = d_model * mult
|
24 |
+
self.net = nn.Sequential(
|
25 |
+
nn.Linear(d_model, inner * 2), # GEGLU
|
26 |
+
nn.GLU(dim=-1),
|
27 |
+
nn.Linear(inner, d_model),
|
28 |
+
nn.Dropout(dropout),
|
29 |
+
)
|
30 |
+
def forward(self, x):
|
31 |
+
return self.net(x)
|
32 |
+
|
33 |
+
# ---------------------
|
34 |
+
# SSW Components
|
35 |
+
# ---------------------
|
36 |
+
class LocalTextureConv(nn.Module):
|
37 |
+
"""Depthwise 1D conv + GLU gate. Causal padding. O(n * d * k) with small k."""
|
38 |
+
def __init__(self, d_model: int, kernel_size: int = 7):
|
39 |
+
super().__init__()
|
40 |
+
assert kernel_size % 2 == 1, "kernel_size should be odd for simple causal pad"
|
41 |
+
self.dw = nn.Conv1d(d_model, d_model, kernel_size, groups=d_model, padding=kernel_size-1)
|
42 |
+
self.pw = nn.Conv1d(d_model, 2 * d_model, 1)
|
43 |
+
def forward(self, x):
|
44 |
+
# x: (B, T, C)
|
45 |
+
x_c = x.transpose(1, 2) # (B, C, T)
|
46 |
+
y = self.dw(x_c)
|
47 |
+
T = x.size(1)
|
48 |
+
y = y[..., :T] # causal crop
|
49 |
+
y = self.pw(y).transpose(1, 2) # (B, T, 2C)
|
50 |
+
y = F.glu(y, dim=-1) # (B, T, C)
|
51 |
+
return y
|
52 |
+
|
53 |
+
class GlobalStatePropagation(nn.Module):
|
54 |
+
"""Simplified selective SSM-like recurrence (toy, readable)."""
|
55 |
+
def __init__(self, d_model: int, state_size: int = 128):
|
56 |
+
super().__init__()
|
57 |
+
self.state_size = state_size
|
58 |
+
self.inp = nn.Linear(d_model, state_size * 3)
|
59 |
+
self.out = nn.Linear(state_size, d_model)
|
60 |
+
def forward(self, x):
|
61 |
+
B, T, _ = x.size()
|
62 |
+
u, f, r = self.inp(x).chunk(3, dim=-1)
|
63 |
+
f = torch.sigmoid(f)
|
64 |
+
r = torch.sigmoid(r)
|
65 |
+
u = torch.tanh(u)
|
66 |
+
h = torch.zeros(B, self.state_size, device=x.device, dtype=x.dtype)
|
67 |
+
outs = []
|
68 |
+
for t in range(T):
|
69 |
+
h = f[:, t] * h + (1 - f[:, t]) * u[:, t]
|
70 |
+
outs.append(r[:, t] * h)
|
71 |
+
y = torch.stack(outs, dim=1) # (B, T, S)
|
72 |
+
return self.out(y) # (B, T, C)
|
73 |
+
|
74 |
+
class ContentBasedSummarizer(nn.Module):
|
75 |
+
"""Top-k sparse attention over history (causal)."""
|
76 |
+
def __init__(self, d_model: int, top_k: int = 8):
|
77 |
+
super().__init__()
|
78 |
+
self.k = top_k
|
79 |
+
self.q = nn.Linear(d_model, d_model, bias=False)
|
80 |
+
self.kv = nn.Linear(d_model, 2 * d_model, bias=False)
|
81 |
+
self.scale = 1.0 / math.sqrt(d_model)
|
82 |
+
self.scorer = nn.Linear(d_model, 1, bias=False)
|
83 |
+
def forward(self, x):
|
84 |
+
B, T, C = x.size()
|
85 |
+
q = self.q(x)
|
86 |
+
k, v = self.kv(x).chunk(2, dim=-1)
|
87 |
+
imp = self.scorer(x).squeeze(-1) # (B, T)
|
88 |
+
out = torch.zeros_like(x)
|
89 |
+
for t in range(T):
|
90 |
+
topk = min(self.k, t + 1)
|
91 |
+
vals, idx = torch.topk(imp[:, :t+1], k=topk, dim=-1)
|
92 |
+
k_sel = torch.gather(k[:, :t+1, :], 1, idx.unsqueeze(-1).expand(-1, -1, C))
|
93 |
+
v_sel = torch.gather(v[:, :t+1, :], 1, idx.unsqueeze(-1).expand(-1, -1, C))
|
94 |
+
q_t = q[:, t:t+1, :]
|
95 |
+
att = torch.matmul(q_t, k_sel.transpose(1, 2)) * self.scale
|
96 |
+
att = F.softmax(att, dim=-1)
|
97 |
+
out[:, t:t+1, :] = torch.matmul(att, v_sel)
|
98 |
+
return out
|
99 |
+
|
100 |
+
class WeaverBlock(nn.Module):
|
101 |
+
def __init__(self, d_model: int, ltc_kernel: int, gsp_state: int, cbs_topk: int, dropout: float):
|
102 |
+
super().__init__()
|
103 |
+
self.norm1 = RMSNorm(d_model)
|
104 |
+
self.ltc = LocalTextureConv(d_model, kernel_size=ltc_kernel)
|
105 |
+
self.gsp = GlobalStatePropagation(d_model, state_size=gsp_state)
|
106 |
+
self.cbs = ContentBasedSummarizer(d_model, top_k=cbs_topk)
|
107 |
+
self.mix = nn.Linear(d_model * 3, d_model)
|
108 |
+
self.dropout = nn.Dropout(dropout)
|
109 |
+
self.norm2 = RMSNorm(d_model)
|
110 |
+
self.ff = FeedForward(d_model, mult=4, dropout=dropout)
|
111 |
+
def forward(self, x):
|
112 |
+
h = self.norm1(x)
|
113 |
+
a = self.ltc(h)
|
114 |
+
b = self.gsp(h)
|
115 |
+
c = self.cbs(h)
|
116 |
+
h = self.mix(torch.cat([a, b, c], dim=-1))
|
117 |
+
x = x + self.dropout(h)
|
118 |
+
x = x + self.ff(self.norm2(x))
|
119 |
+
return x
|
120 |
+
|
121 |
+
class SSWLM(nn.Module):
|
122 |
+
def __init__(self, vocab_size: int, d_model: int = 512, n_layers: int = 8,
|
123 |
+
ltc_kernel: int = 7, gsp_state: int = 128, cbs_topk: int = 8,
|
124 |
+
dropout: float = 0.1, max_seq_len: int = 1024):
|
125 |
+
super().__init__()
|
126 |
+
self.tok_emb = nn.Embedding(vocab_size, d_model)
|
127 |
+
self.pos_emb = nn.Embedding(max_seq_len, d_model)
|
128 |
+
self.layers = nn.ModuleList([
|
129 |
+
WeaverBlock(d_model, ltc_kernel, gsp_state, cbs_topk, dropout)
|
130 |
+
for _ in range(n_layers)
|
131 |
+
])
|
132 |
+
self.norm = RMSNorm(d_model)
|
133 |
+
self.head = nn.Linear(d_model, vocab_size, bias=False)
|
134 |
+
self.max_seq_len = max_seq_len
|
135 |
+
|
136 |
+
def forward(self, input_ids: torch.Tensor):
|
137 |
+
B, T = input_ids.size()
|
138 |
+
assert T <= self.max_seq_len, "sequence too long"
|
139 |
+
pos = torch.arange(T, device=input_ids.device)
|
140 |
+
x = self.tok_emb(input_ids) + self.pos_emb(pos)[None, :, :]
|
141 |
+
for blk in self.layers:
|
142 |
+
x = blk(x)
|
143 |
+
x = self.norm(x)
|
144 |
+
return self.head(x)
|
145 |
+
|
146 |
+
@torch.no_grad()
|
147 |
+
def generate(
|
148 |
+
self,
|
149 |
+
input_ids: torch.Tensor,
|
150 |
+
max_new_tokens: int = 100,
|
151 |
+
temperature: float = 1.0,
|
152 |
+
top_p: float = 0.9,
|
153 |
+
top_k: int = 50,
|
154 |
+
repetition_penalty: float = 1.1,
|
155 |
+
eos_token_id: Optional[int] = None,
|
156 |
+
):
|
157 |
+
self.eval()
|
158 |
+
for _ in range(max_new_tokens):
|
159 |
+
inp = input_ids[:, -self.max_seq_len:]
|
160 |
+
logits = self.forward(inp)[:, -1, :] / max(1e-6, temperature)
|
161 |
+
|
162 |
+
# repetition penalty (simple): downweight already seen token logits
|
163 |
+
if repetition_penalty and repetition_penalty > 1.0:
|
164 |
+
for b in range(input_ids.size(0)):
|
165 |
+
seen = torch.bincount(input_ids[b], minlength=logits.size(-1)).bool()
|
166 |
+
logits[b, seen] /= repetition_penalty
|
167 |
+
|
168 |
+
# top-k filter
|
169 |
+
if top_k and top_k > 0:
|
170 |
+
k = min(top_k, logits.size(-1))
|
171 |
+
topk_vals, topk_idx = torch.topk(logits, k=k, dim=-1)
|
172 |
+
mask = torch.full_like(logits, float("-inf"))
|
173 |
+
logits = mask.scatter(1, topk_idx, topk_vals)
|
174 |
+
|
175 |
+
# nucleus (top-p) filter
|
176 |
+
if top_p < 1.0:
|
177 |
+
sorted_logits, sorted_idx = torch.sort(logits, descending=True)
|
178 |
+
probs = torch.softmax(sorted_logits, dim=-1)
|
179 |
+
cumsum = torch.cumsum(probs, dim=-1)
|
180 |
+
cutoff = cumsum > top_p
|
181 |
+
cutoff[..., 0] = False # keep at least one
|
182 |
+
sorted_logits[cutoff] = float("-inf")
|
183 |
+
# unsort back
|
184 |
+
inv_idx = torch.argsort(sorted_idx, dim=-1)
|
185 |
+
logits = torch.gather(sorted_logits, 1, inv_idx)
|
186 |
+
|
187 |
+
probs = torch.softmax(logits, dim=-1)
|
188 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
189 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
190 |
+
|
191 |
+
if eos_token_id is not None and (next_token == eos_token_id).all():
|
192 |
+
break
|
193 |
+
return input_ids
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|