File size: 7,832 Bytes
9e81e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F

# ---------------------
# Utility Layers
# ---------------------
class RMSNorm(nn.Module):
    def __init__(self, d: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(d))
    def forward(self, x):
        norm = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(norm + self.eps)
        return self.weight * x

class FeedForward(nn.Module):
    def __init__(self, d_model: int, mult: int = 4, dropout: float = 0.0):
        super().__init__()
        inner = d_model * mult
        self.net = nn.Sequential(
            nn.Linear(d_model, inner * 2),  # GEGLU
            nn.GLU(dim=-1),
            nn.Linear(inner, d_model),
            nn.Dropout(dropout),
        )
    def forward(self, x):
        return self.net(x)

# ---------------------
# SSW Components
# ---------------------
class LocalTextureConv(nn.Module):
    """Depthwise 1D conv + GLU gate. Causal padding. O(n * d * k) with small k."""
    def __init__(self, d_model: int, kernel_size: int = 7):
        super().__init__()
        assert kernel_size % 2 == 1, "kernel_size should be odd for simple causal pad"
        self.dw = nn.Conv1d(d_model, d_model, kernel_size, groups=d_model, padding=kernel_size-1)
        self.pw = nn.Conv1d(d_model, 2 * d_model, 1)
    def forward(self, x):
        # x: (B, T, C)
        x_c = x.transpose(1, 2)  # (B, C, T)
        y = self.dw(x_c)
        T = x.size(1)
        y = y[..., :T]  # causal crop
        y = self.pw(y).transpose(1, 2)  # (B, T, 2C)
        y = F.glu(y, dim=-1)  # (B, T, C)
        return y

class GlobalStatePropagation(nn.Module):
    """Simplified selective SSM-like recurrence (toy, readable)."""
    def __init__(self, d_model: int, state_size: int = 128):
        super().__init__()
        self.state_size = state_size
        self.inp = nn.Linear(d_model, state_size * 3)
        self.out = nn.Linear(state_size, d_model)
    def forward(self, x):
        B, T, _ = x.size()
        u, f, r = self.inp(x).chunk(3, dim=-1)
        f = torch.sigmoid(f)
        r = torch.sigmoid(r)
        u = torch.tanh(u)
        h = torch.zeros(B, self.state_size, device=x.device, dtype=x.dtype)
        outs = []
        for t in range(T):
            h = f[:, t] * h + (1 - f[:, t]) * u[:, t]
            outs.append(r[:, t] * h)
        y = torch.stack(outs, dim=1)  # (B, T, S)
        return self.out(y)            # (B, T, C)

class ContentBasedSummarizer(nn.Module):
    """Top-k sparse attention over history (causal)."""
    def __init__(self, d_model: int, top_k: int = 8):
        super().__init__()
        self.k = top_k
        self.q = nn.Linear(d_model, d_model, bias=False)
        self.kv = nn.Linear(d_model, 2 * d_model, bias=False)
        self.scale = 1.0 / math.sqrt(d_model)
        self.scorer = nn.Linear(d_model, 1, bias=False)
    def forward(self, x):
        B, T, C = x.size()
        q = self.q(x)
        k, v = self.kv(x).chunk(2, dim=-1)
        imp = self.scorer(x).squeeze(-1)  # (B, T)
        out = torch.zeros_like(x)
        for t in range(T):
            topk = min(self.k, t + 1)
            vals, idx = torch.topk(imp[:, :t+1], k=topk, dim=-1)
            k_sel = torch.gather(k[:, :t+1, :], 1, idx.unsqueeze(-1).expand(-1, -1, C))
            v_sel = torch.gather(v[:, :t+1, :], 1, idx.unsqueeze(-1).expand(-1, -1, C))
            q_t = q[:, t:t+1, :]
            att = torch.matmul(q_t, k_sel.transpose(1, 2)) * self.scale
            att = F.softmax(att, dim=-1)
            out[:, t:t+1, :] = torch.matmul(att, v_sel)
        return out

class WeaverBlock(nn.Module):
    def __init__(self, d_model: int, ltc_kernel: int, gsp_state: int, cbs_topk: int, dropout: float):
        super().__init__()
        self.norm1 = RMSNorm(d_model)
        self.ltc = LocalTextureConv(d_model, kernel_size=ltc_kernel)
        self.gsp = GlobalStatePropagation(d_model, state_size=gsp_state)
        self.cbs = ContentBasedSummarizer(d_model, top_k=cbs_topk)
        self.mix = nn.Linear(d_model * 3, d_model)
        self.dropout = nn.Dropout(dropout)
        self.norm2 = RMSNorm(d_model)
        self.ff = FeedForward(d_model, mult=4, dropout=dropout)
    def forward(self, x):
        h = self.norm1(x)
        a = self.ltc(h)
        b = self.gsp(h)
        c = self.cbs(h)
        h = self.mix(torch.cat([a, b, c], dim=-1))
        x = x + self.dropout(h)
        x = x + self.ff(self.norm2(x))
        return x

class SSWLM(nn.Module):
    def __init__(self, vocab_size: int, d_model: int = 512, n_layers: int = 8,

                 ltc_kernel: int = 7, gsp_state: int = 128, cbs_topk: int = 8,

                 dropout: float = 0.1, max_seq_len: int = 1024):
        super().__init__()
        self.tok_emb = nn.Embedding(vocab_size, d_model)
        self.pos_emb = nn.Embedding(max_seq_len, d_model)
        self.layers = nn.ModuleList([
            WeaverBlock(d_model, ltc_kernel, gsp_state, cbs_topk, dropout)
            for _ in range(n_layers)
        ])
        self.norm = RMSNorm(d_model)
        self.head = nn.Linear(d_model, vocab_size, bias=False)
        self.max_seq_len = max_seq_len

    def forward(self, input_ids: torch.Tensor):
        B, T = input_ids.size()
        assert T <= self.max_seq_len, "sequence too long"
        pos = torch.arange(T, device=input_ids.device)
        x = self.tok_emb(input_ids) + self.pos_emb(pos)[None, :, :]
        for blk in self.layers:
            x = blk(x)
        x = self.norm(x)
        return self.head(x)

    @torch.no_grad()
    def generate(

        self,

        input_ids: torch.Tensor,

        max_new_tokens: int = 100,

        temperature: float = 1.0,

        top_p: float = 0.9,

        top_k: int = 50,

        repetition_penalty: float = 1.1,

        eos_token_id: Optional[int] = None,

    ):
        self.eval()
        for _ in range(max_new_tokens):
            inp = input_ids[:, -self.max_seq_len:]
            logits = self.forward(inp)[:, -1, :] / max(1e-6, temperature)

            # repetition penalty (simple): downweight already seen token logits
            if repetition_penalty and repetition_penalty > 1.0:
                for b in range(input_ids.size(0)):
                    seen = torch.bincount(input_ids[b], minlength=logits.size(-1)).bool()
                    logits[b, seen] /= repetition_penalty

            # top-k filter
            if top_k and top_k > 0:
                k = min(top_k, logits.size(-1))
                topk_vals, topk_idx = torch.topk(logits, k=k, dim=-1)
                mask = torch.full_like(logits, float("-inf"))
                logits = mask.scatter(1, topk_idx, topk_vals)

            # nucleus (top-p) filter
            if top_p < 1.0:
                sorted_logits, sorted_idx = torch.sort(logits, descending=True)
                probs = torch.softmax(sorted_logits, dim=-1)
                cumsum = torch.cumsum(probs, dim=-1)
                cutoff = cumsum > top_p
                cutoff[..., 0] = False  # keep at least one
                sorted_logits[cutoff] = float("-inf")
                # unsort back
                inv_idx = torch.argsort(sorted_idx, dim=-1)
                logits = torch.gather(sorted_logits, 1, inv_idx)

            probs = torch.softmax(logits, dim=-1)
            next_token = torch.multinomial(probs, num_samples=1)
            input_ids = torch.cat([input_ids, next_token], dim=1)

            if eos_token_id is not None and (next_token == eos_token_id).all():
                break
        return input_ids