File size: 34,635 Bytes
974f545
d52ad1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
974f545
d52ad1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6190
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: What is the duration of the period mentioned in the text?
  sentences:
  - . The only excep Ɵon to the requirement that the plainƟff must be a lending i nsƟtuƟon
    in order to invoke the provisions of the Act is contained in SecƟon 25, in terms
    of which a person who inter alia knowingly draws a cheque which is subsequently
    dishonoured by the bank for want of funds is guilty of an offence under the Act,
    and proceedings can be insƟtuted against such person in the Magistrate’s
  - '? The 1st question of law is formulated on the basis that , the 1st Defendant

    is the licensee of the 2nd Defendant and therefore, the 1st Defendant cannot claim

    prescriptive title to the subject matter'
  - .50,000/ - (that is , a period of 36 months) but such “Facility” is subject to
    review on 30 /09/2000”, (that is, a period of about only 5 months from the date
    of P4)
- source_sentence: What is the purpose of the disposition of the property by Lanka
    Tractors Limited as mentioned in the text?
  sentences:
  - . (3) is whether the said disposition of the property by Lanka Tractors Limited
    was done with the sole object of defrauding its creditors. Section 348 of the
    Companies Act which describes about Fraudulent reference would be relevant in
    this regard
  - . In the arbitration process, the Government is not involved; the court system
    is not involved (except as provided for in the Act); the parties do not have to
    rely on any Government institution for resolution of their dispute. Process of
    conducting the arbitration, venue, time, mode of adducing evidence are all decided
    by agreement of parties
  - . This is broadly similar to the provision in the summary procedure on liquid
    claims. The amendment in clause 8 of the Bill, repeals the defini Ɵon of the term
    ‘debt’ in sec Ɵon 30. The subs Ɵtuted defini Ɵon excludes the words referred to
    above which limit its applicability to money owed under a promise or agreement
    which is in wri Ɵng
- source_sentence: What is one of the topics covered in the training program?
  sentences:
  - . The resul Ɵng posiƟon is that the court would not have any wri Ʃen evidence
    of the commitment on the part of the debtor when it issues decree nisi in the
    first instance
  - '? Before this C ourt, there is no dispute on the manner in which the appellant

    obtained the title of the land in question'
  - . Detail reporting procedures to government of Sri Lanka’s contact points. - 4
    Weeks Phase 3 Training of Port Facility Security Officers SATHSINDU/BAGNOLD undertakes
    to design a training program and conducted aid program for up to ten persons.
     Understanding the reasons for the ISPS code  ISPS Code content and requirements.
     Understanding the ISPS Code
- source_sentence: What type of action was taken by the Divisional Secretary?
  sentences:
  - .2020 was also sent by the Divisional Secretary of Th amankaduwa imposing similar
    restrictions as by the Polonnaruwa Pradeshiya Sabha
  - . When Seylan Bank published the resolution of its board of directors which exercised
    its powers of Parate Execution in the newspaper on 10th March 2006-, HNB had made
    the application dated 21st March [SC Appeal No. 85A /2009 ] Page 6 of 25 2006
    to the District Court of Colombo in terms of Sections 260, 261, 348, 359 and 352
    of the Companies Act No
  - . Having regard to the above -mentioned stipulated circumstances , I consider
    the facts put forward for the appellant , seeking a reduction of sentence. The
    offence was committed in 2004. The appellant had been in remand custody for more
    than three years and the appell ant did not have any previous convictions
- source_sentence: What is described in Section 25 of the Arbitration Act?
  sentences:
  - . But where a matter is within the plenary jurisdiction of the Court if no objection
    is taken, the Court will then have jurisdiction to proceed on with the matter
    and make a valid order.” 14 31. Further , in the case of Don Tilakaratne v
  - '. (3) The provision of subsections (1) and (2) shall apply only to the extent

    agreed to by the parties. (4) The arbitral tribunal shall decide according to

    considerations of general justice and fairness or trade usages only if the parties

    have expressly authorised it to do so. Section 25 of the Arbitration Act describes

    the form and content of the arbitral award as follows: 25'
  - '. 9 and 10 based on the objection taken to them by the Counsel for HNB, despite

    the fact that they did not arise from the pleadings, and were altogether inconsistent

    with them, answered the afore-stated question of law (in respect of which this

    Court had granted Leave to Appeal in that case) in the affirmative and in favour

    of HNB, and stated as follows: “In conclusion, it needs to be emphasised'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.5741279069767442
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7616279069767442
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8197674418604651
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8851744186046512
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5741279069767442
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.25387596899224807
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.163953488372093
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0885174418604651
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5741279069767442
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7616279069767442
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8197674418604651
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8851744186046512
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7308126785084815
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6812459625322997
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6852483059452662
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.5741279069767442
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7630813953488372
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8212209302325582
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.875
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5741279069767442
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2543604651162791
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16424418604651161
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0875
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5741279069767442
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7630813953488372
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8212209302325582
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.875
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.726227401269234
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6782132475083055
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6827936993080407
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.5552325581395349
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7281976744186046
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7921511627906976
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8619186046511628
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5552325581395349
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.24273255813953487
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15843023255813954
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08619186046511627
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5552325581395349
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7281976744186046
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7921511627906976
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8619186046511628
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7077790398550751
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6585646225544481
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6630890497309057
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.49709302325581395
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6758720930232558
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7354651162790697
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8241279069767442
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.49709302325581395
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.22529069767441862
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14709302325581394
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08241279069767442
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.49709302325581395
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6758720930232558
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7354651162790697
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8241279069767442
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6567813216281579
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.6037779162052417
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.6090388181529673
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.39680232558139533
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5581395348837209
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.622093023255814
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7252906976744186
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.39680232558139533
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18604651162790695
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12441860465116278
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07252906976744186
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.39680232558139533
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5581395348837209
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.622093023255814
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7252906976744186
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5513541983050395
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.497020348837209
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5050183064129367
      name: Cosine Map@100
---


# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("sentence_transformers_model_id")

# Run inference

sentences = [

    'What is described in Section 25 of the Arbitration Act?',

    '. (3) The provision of subsections (1) and (2) shall apply only to the extent agreed to by the parties. (4) The arbitral tribunal shall decide according to considerations of general justice and fairness or trade usages only if the parties have expressly authorised it to do so. Section 25 of the Arbitration Act describes the form and content of the arbitral award as follows: 25',

    '. 9 and 10 based on the objection taken to them by the Counsel for HNB, despite the fact that they did not arise from the pleadings, and were altogether inconsistent with them, answered the afore-stated question of law (in respect of which this Court had granted Leave to Appeal in that case) in the affirmative and in favour of HNB, and stated as follows: “In conclusion, it needs to be emphasised',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |

|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|

| cosine_accuracy@1   | 0.5741     | 0.5741     | 0.5552     | 0.4971     | 0.3968     |
| cosine_accuracy@3   | 0.7616     | 0.7631     | 0.7282     | 0.6759     | 0.5581     |

| cosine_accuracy@5   | 0.8198     | 0.8212     | 0.7922     | 0.7355     | 0.6221     |
| cosine_accuracy@10  | 0.8852     | 0.875      | 0.8619     | 0.8241     | 0.7253     |

| cosine_precision@1  | 0.5741     | 0.5741     | 0.5552     | 0.4971     | 0.3968     |
| cosine_precision@3  | 0.2539     | 0.2544     | 0.2427     | 0.2253     | 0.186      |

| cosine_precision@5  | 0.164      | 0.1642     | 0.1584     | 0.1471     | 0.1244     |
| cosine_precision@10 | 0.0885     | 0.0875     | 0.0862     | 0.0824     | 0.0725     |

| cosine_recall@1     | 0.5741     | 0.5741     | 0.5552     | 0.4971     | 0.3968     |
| cosine_recall@3     | 0.7616     | 0.7631     | 0.7282     | 0.6759     | 0.5581     |

| cosine_recall@5     | 0.8198     | 0.8212     | 0.7922     | 0.7355     | 0.6221     |
| cosine_recall@10    | 0.8852     | 0.875      | 0.8619     | 0.8241     | 0.7253     |

| **cosine_ndcg@10**  | **0.7308** | **0.7262** | **0.7078** | **0.6568** | **0.5514** |

| cosine_mrr@10       | 0.6812     | 0.6782     | 0.6586     | 0.6038     | 0.497      |
| cosine_map@100      | 0.6852     | 0.6828     | 0.6631     | 0.609      | 0.505      |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset



* Size: 6,190 training samples

* Columns: <code>anchor</code> and <code>positive</code>

* Approximate statistics based on the first 1000 samples:

  |         | anchor                                                                            | positive                                                                           |

  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                             |

  | details | <ul><li>min: 7 tokens</li><li>mean: 15.11 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 69.53 tokens</li><li>max: 214 tokens</li></ul> |

* Samples:

  | anchor                                                                     | positive                                                                                                                                                                                                                                                                                                                                                                                       |

  |:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>How must the District Court exercise its discretion?</code>          | <code>imposition of ‘ a’ term; (5) It is not mandatory to impose security, as evinced by the use of the conjunction “or”; (6) In imposing terms, the District Court must be mindful of the objectives of the Act, and its discretion must be exercised judicially</code>                                                                                                                       |

  | <code>What is the source of the observation made by Christian Appu?</code> | <code>. Christian Appu , (1895) 1 NLR 288 observed that , “possession is "disturbed" either by an action intended to remove the possessor from the land, or by acts which prevent the possessor from enjoying the free and full use of 12 the land of which he is in the course of acquiring the dominion, and which convert his continuous user into a disconnected and divided user ”</code> |

  | <code>What must the defendant do regarding the plaintiff's claim?</code>   | <code>. The Court of Appeal in Ramanayake v Sampath Bank Ltd and Others [(1993) 1 Sri LR 145 at page 153] has held that, “The defendant has to deal with the plaintiff’s claim on its merits; it is not competent for the defendant to merely set out technical objections. It is also incumbent on the defendant to reveal his defence, if he has any</code>                                  |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "MultipleNegativesRankingLoss",

      "matryoshka_dims": [
          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```


### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |

|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|

| 0.1034  | 5      | 29.8712       | -                      | -                      | -                      | -                      | -                     |

| 0.2067  | 10     | 26.1323       | -                      | -                      | -                      | -                      | -                     |

| 0.3101  | 15     | 17.8585       | -                      | -                      | -                      | -                      | -                     |

| 0.4134  | 20     | 14.0232       | -                      | -                      | -                      | -                      | -                     |

| 0.5168  | 25     | 11.6897       | -                      | -                      | -                      | -                      | -                     |

| 0.6202  | 30     | 10.8431       | -                      | -                      | -                      | -                      | -                     |

| 0.7235  | 35     | 9.264         | -                      | -                      | -                      | -                      | -                     |

| 0.8269  | 40     | 11.2186       | -                      | -                      | -                      | -                      | -                     |

| 0.9302  | 45     | 9.9143        | -                      | -                      | -                      | -                      | -                     |

| 1.0     | 49     | -             | 0.7134                 | 0.7110                 | 0.6902                 | 0.6341                 | 0.5282                |

| 1.0207  | 50     | 7.2581        | -                      | -                      | -                      | -                      | -                     |

| 1.1240  | 55     | 6.066         | -                      | -                      | -                      | -                      | -                     |

| 1.2274  | 60     | 6.3626        | -                      | -                      | -                      | -                      | -                     |

| 1.3307  | 65     | 6.8135        | -                      | -                      | -                      | -                      | -                     |

| 1.4341  | 70     | 5.5556        | -                      | -                      | -                      | -                      | -                     |

| 1.5375  | 75     | 6.0144        | -                      | -                      | -                      | -                      | -                     |

| 1.6408  | 80     | 6.1965        | -                      | -                      | -                      | -                      | -                     |

| 1.7442  | 85     | 5.596         | -                      | -                      | -                      | -                      | -                     |

| 1.8475  | 90     | 6.631         | -                      | -                      | -                      | -                      | -                     |

| 1.9509  | 95     | 6.3319        | -                      | -                      | -                      | -                      | -                     |

| **2.0** | **98** | **-**         | **0.7331**             | **0.7304**             | **0.7074**             | **0.6569**             | **0.5477**            |

| 2.0413  | 100    | 4.7382        | -                      | -                      | -                      | -                      | -                     |

| 2.1447  | 105    | 4.1516        | -                      | -                      | -                      | -                      | -                     |

| 2.2481  | 110    | 4.3517        | -                      | -                      | -                      | -                      | -                     |

| 2.3514  | 115    | 3.7044        | -                      | -                      | -                      | -                      | -                     |

| 2.4548  | 120    | 4.1593        | -                      | -                      | -                      | -                      | -                     |

| 2.5581  | 125    | 4.8081        | -                      | -                      | -                      | -                      | -                     |

| 2.6615  | 130    | 3.908         | -                      | -                      | -                      | -                      | -                     |

| 2.7649  | 135    | 3.7684        | -                      | -                      | -                      | -                      | -                     |

| 2.8682  | 140    | 3.8927        | -                      | -                      | -                      | -                      | -                     |

| 2.9509  | 144    | -             | 0.7308                 | 0.7262                 | 0.7078                 | 0.6568                 | 0.5514                |



* The bold row denotes the saved checkpoint.



### Framework Versions

- Python: 3.13.3

- Sentence Transformers: 3.4.0

- Transformers: 4.48.1

- PyTorch: 2.6.0+cu126

- Accelerate: 1.3.0

- Datasets: 3.2.0

- Tokenizers: 0.21.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning},

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->