File size: 34,635 Bytes
974f545 d52ad1b 974f545 d52ad1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6190
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: What is the duration of the period mentioned in the text?
sentences:
- . The only excep Ɵon to the requirement that the plainƟff must be a lending i nsƟtuƟon
in order to invoke the provisions of the Act is contained in SecƟon 25, in terms
of which a person who inter alia knowingly draws a cheque which is subsequently
dishonoured by the bank for want of funds is guilty of an offence under the Act,
and proceedings can be insƟtuted against such person in the Magistrate’s
- '? The 1st question of law is formulated on the basis that , the 1st Defendant
is the licensee of the 2nd Defendant and therefore, the 1st Defendant cannot claim
prescriptive title to the subject matter'
- .50,000/ - (that is , a period of 36 months) but such “Facility” is subject to
review on 30 /09/2000”, (that is, a period of about only 5 months from the date
of P4)
- source_sentence: What is the purpose of the disposition of the property by Lanka
Tractors Limited as mentioned in the text?
sentences:
- . (3) is whether the said disposition of the property by Lanka Tractors Limited
was done with the sole object of defrauding its creditors. Section 348 of the
Companies Act which describes about Fraudulent reference would be relevant in
this regard
- . In the arbitration process, the Government is not involved; the court system
is not involved (except as provided for in the Act); the parties do not have to
rely on any Government institution for resolution of their dispute. Process of
conducting the arbitration, venue, time, mode of adducing evidence are all decided
by agreement of parties
- . This is broadly similar to the provision in the summary procedure on liquid
claims. The amendment in clause 8 of the Bill, repeals the defini Ɵon of the term
‘debt’ in sec Ɵon 30. The subs Ɵtuted defini Ɵon excludes the words referred to
above which limit its applicability to money owed under a promise or agreement
which is in wri Ɵng
- source_sentence: What is one of the topics covered in the training program?
sentences:
- . The resul Ɵng posiƟon is that the court would not have any wri Ʃen evidence
of the commitment on the part of the debtor when it issues decree nisi in the
first instance
- '? Before this C ourt, there is no dispute on the manner in which the appellant
obtained the title of the land in question'
- . Detail reporting procedures to government of Sri Lanka’s contact points. - 4
Weeks Phase 3 Training of Port Facility Security Officers SATHSINDU/BAGNOLD undertakes
to design a training program and conducted aid program for up to ten persons.
• Understanding the reasons for the ISPS code • ISPS Code content and requirements.
• Understanding the ISPS Code
- source_sentence: What type of action was taken by the Divisional Secretary?
sentences:
- .2020 was also sent by the Divisional Secretary of Th amankaduwa imposing similar
restrictions as by the Polonnaruwa Pradeshiya Sabha
- . When Seylan Bank published the resolution of its board of directors which exercised
its powers of Parate Execution in the newspaper on 10th March 2006-, HNB had made
the application dated 21st March [SC Appeal No. 85A /2009 ] Page 6 of 25 2006
to the District Court of Colombo in terms of Sections 260, 261, 348, 359 and 352
of the Companies Act No
- . Having regard to the above -mentioned stipulated circumstances , I consider
the facts put forward for the appellant , seeking a reduction of sentence. The
offence was committed in 2004. The appellant had been in remand custody for more
than three years and the appell ant did not have any previous convictions
- source_sentence: What is described in Section 25 of the Arbitration Act?
sentences:
- . But where a matter is within the plenary jurisdiction of the Court if no objection
is taken, the Court will then have jurisdiction to proceed on with the matter
and make a valid order.” 14 31. Further , in the case of Don Tilakaratne v
- '. (3) The provision of subsections (1) and (2) shall apply only to the extent
agreed to by the parties. (4) The arbitral tribunal shall decide according to
considerations of general justice and fairness or trade usages only if the parties
have expressly authorised it to do so. Section 25 of the Arbitration Act describes
the form and content of the arbitral award as follows: 25'
- '. 9 and 10 based on the objection taken to them by the Counsel for HNB, despite
the fact that they did not arise from the pleadings, and were altogether inconsistent
with them, answered the afore-stated question of law (in respect of which this
Court had granted Leave to Appeal in that case) in the affirmative and in favour
of HNB, and stated as follows: “In conclusion, it needs to be emphasised'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.5741279069767442
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7616279069767442
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8197674418604651
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8851744186046512
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5741279069767442
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.25387596899224807
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.163953488372093
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0885174418604651
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5741279069767442
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7616279069767442
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8197674418604651
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8851744186046512
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7308126785084815
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6812459625322997
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6852483059452662
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.5741279069767442
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7630813953488372
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8212209302325582
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.875
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5741279069767442
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2543604651162791
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16424418604651161
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0875
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5741279069767442
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7630813953488372
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8212209302325582
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.875
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.726227401269234
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6782132475083055
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6827936993080407
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.5552325581395349
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7281976744186046
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7921511627906976
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8619186046511628
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5552325581395349
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.24273255813953487
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15843023255813954
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08619186046511627
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5552325581395349
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7281976744186046
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7921511627906976
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8619186046511628
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7077790398550751
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6585646225544481
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6630890497309057
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.49709302325581395
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6758720930232558
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7354651162790697
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8241279069767442
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.49709302325581395
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.22529069767441862
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14709302325581394
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08241279069767442
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.49709302325581395
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6758720930232558
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7354651162790697
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8241279069767442
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6567813216281579
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6037779162052417
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6090388181529673
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.39680232558139533
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5581395348837209
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.622093023255814
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7252906976744186
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.39680232558139533
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18604651162790695
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12441860465116278
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07252906976744186
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.39680232558139533
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5581395348837209
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.622093023255814
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7252906976744186
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5513541983050395
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.497020348837209
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5050183064129367
name: Cosine Map@100
---
# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is described in Section 25 of the Arbitration Act?',
'. (3) The provision of subsections (1) and (2) shall apply only to the extent agreed to by the parties. (4) The arbitral tribunal shall decide according to considerations of general justice and fairness or trade usages only if the parties have expressly authorised it to do so. Section 25 of the Arbitration Act describes the form and content of the arbitral award as follows: 25',
'. 9 and 10 based on the objection taken to them by the Counsel for HNB, despite the fact that they did not arise from the pleadings, and were altogether inconsistent with them, answered the afore-stated question of law (in respect of which this Court had granted Leave to Appeal in that case) in the affirmative and in favour of HNB, and stated as follows: “In conclusion, it needs to be emphasised',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.5741 | 0.5741 | 0.5552 | 0.4971 | 0.3968 |
| cosine_accuracy@3 | 0.7616 | 0.7631 | 0.7282 | 0.6759 | 0.5581 |
| cosine_accuracy@5 | 0.8198 | 0.8212 | 0.7922 | 0.7355 | 0.6221 |
| cosine_accuracy@10 | 0.8852 | 0.875 | 0.8619 | 0.8241 | 0.7253 |
| cosine_precision@1 | 0.5741 | 0.5741 | 0.5552 | 0.4971 | 0.3968 |
| cosine_precision@3 | 0.2539 | 0.2544 | 0.2427 | 0.2253 | 0.186 |
| cosine_precision@5 | 0.164 | 0.1642 | 0.1584 | 0.1471 | 0.1244 |
| cosine_precision@10 | 0.0885 | 0.0875 | 0.0862 | 0.0824 | 0.0725 |
| cosine_recall@1 | 0.5741 | 0.5741 | 0.5552 | 0.4971 | 0.3968 |
| cosine_recall@3 | 0.7616 | 0.7631 | 0.7282 | 0.6759 | 0.5581 |
| cosine_recall@5 | 0.8198 | 0.8212 | 0.7922 | 0.7355 | 0.6221 |
| cosine_recall@10 | 0.8852 | 0.875 | 0.8619 | 0.8241 | 0.7253 |
| **cosine_ndcg@10** | **0.7308** | **0.7262** | **0.7078** | **0.6568** | **0.5514** |
| cosine_mrr@10 | 0.6812 | 0.6782 | 0.6586 | 0.6038 | 0.497 |
| cosine_map@100 | 0.6852 | 0.6828 | 0.6631 | 0.609 | 0.505 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,190 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.11 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 69.53 tokens</li><li>max: 214 tokens</li></ul> |
* Samples:
| anchor | positive |
|:---------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How must the District Court exercise its discretion?</code> | <code>imposition of ‘ a’ term; (5) It is not mandatory to impose security, as evinced by the use of the conjunction “or”; (6) In imposing terms, the District Court must be mindful of the objectives of the Act, and its discretion must be exercised judicially</code> |
| <code>What is the source of the observation made by Christian Appu?</code> | <code>. Christian Appu , (1895) 1 NLR 288 observed that , “possession is "disturbed" either by an action intended to remove the possessor from the land, or by acts which prevent the possessor from enjoying the free and full use of 12 the land of which he is in the course of acquiring the dominion, and which convert his continuous user into a disconnected and divided user ”</code> |
| <code>What must the defendant do regarding the plaintiff's claim?</code> | <code>. The Court of Appeal in Ramanayake v Sampath Bank Ltd and Others [(1993) 1 Sri LR 145 at page 153] has held that, “The defendant has to deal with the plaintiff’s claim on its merits; it is not competent for the defendant to merely set out technical objections. It is also incumbent on the defendant to reveal his defence, if he has any</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.1034 | 5 | 29.8712 | - | - | - | - | - |
| 0.2067 | 10 | 26.1323 | - | - | - | - | - |
| 0.3101 | 15 | 17.8585 | - | - | - | - | - |
| 0.4134 | 20 | 14.0232 | - | - | - | - | - |
| 0.5168 | 25 | 11.6897 | - | - | - | - | - |
| 0.6202 | 30 | 10.8431 | - | - | - | - | - |
| 0.7235 | 35 | 9.264 | - | - | - | - | - |
| 0.8269 | 40 | 11.2186 | - | - | - | - | - |
| 0.9302 | 45 | 9.9143 | - | - | - | - | - |
| 1.0 | 49 | - | 0.7134 | 0.7110 | 0.6902 | 0.6341 | 0.5282 |
| 1.0207 | 50 | 7.2581 | - | - | - | - | - |
| 1.1240 | 55 | 6.066 | - | - | - | - | - |
| 1.2274 | 60 | 6.3626 | - | - | - | - | - |
| 1.3307 | 65 | 6.8135 | - | - | - | - | - |
| 1.4341 | 70 | 5.5556 | - | - | - | - | - |
| 1.5375 | 75 | 6.0144 | - | - | - | - | - |
| 1.6408 | 80 | 6.1965 | - | - | - | - | - |
| 1.7442 | 85 | 5.596 | - | - | - | - | - |
| 1.8475 | 90 | 6.631 | - | - | - | - | - |
| 1.9509 | 95 | 6.3319 | - | - | - | - | - |
| **2.0** | **98** | **-** | **0.7331** | **0.7304** | **0.7074** | **0.6569** | **0.5477** |
| 2.0413 | 100 | 4.7382 | - | - | - | - | - |
| 2.1447 | 105 | 4.1516 | - | - | - | - | - |
| 2.2481 | 110 | 4.3517 | - | - | - | - | - |
| 2.3514 | 115 | 3.7044 | - | - | - | - | - |
| 2.4548 | 120 | 4.1593 | - | - | - | - | - |
| 2.5581 | 125 | 4.8081 | - | - | - | - | - |
| 2.6615 | 130 | 3.908 | - | - | - | - | - |
| 2.7649 | 135 | 3.7684 | - | - | - | - | - |
| 2.8682 | 140 | 3.8927 | - | - | - | - | - |
| 2.9509 | 144 | - | 0.7308 | 0.7262 | 0.7078 | 0.6568 | 0.5514 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.13.3
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.6.0+cu126
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |