Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- mistralai/Voxtral-Small-24B-2507
|
5 |
+
tags:
|
6 |
+
- mistral
|
7 |
+
- quantized
|
8 |
+
- 8bit
|
9 |
+
- llm
|
10 |
+
- language-model
|
11 |
+
- transformers
|
12 |
+
- mlx
|
13 |
+
---
|
14 |
+
|
15 |
+
# VincentGOURBIN/voxtral-small-8bit-mixed
|
16 |
+
|
17 |
+
This is an 8-bit quantized version of the [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507) language model.
|
18 |
+
It is provided in standard Hugging Face Transformers format and compatible with [mlx.voxtral](https://github.com/mzbac/mlx.voxtral).
|
19 |
+
|
20 |
+
## 🔧 About this model
|
21 |
+
|
22 |
+
- **Base model**: [`mistralai/Voxtral-Small-24B-2507`](https://huggingface.co/mistralai/Voxtral-Small-24B-2507)
|
23 |
+
- **Quantization**: 8-bit mixed precision
|
24 |
+
- **Format**: Transformers-compatible (safetensors), usable with MLX and Hugging Face
|
25 |
+
|
26 |
+
## 🙏 Acknowledgments
|
27 |
+
|
28 |
+
Huge thanks to:
|
29 |
+
|
30 |
+
- **[Mistral AI](https://mistral.ai/)** for releasing the original Voxtral-Small model
|
31 |
+
- **[mlx-voxtral](https://github.com/mzbac/mlx.voxtral)** for the quantization tooling and MLX support
|
32 |
+
|
33 |
+
This work is a quantized derivative of [mistralai/Voxtral-Small-24B-2507](https://huggingface.co/mistralai/Voxtral-Small-24B-2507), made easier by the amazing work of the `voxtral` project.
|
34 |
+
|
35 |
+
## 🚀 Usage
|
36 |
+
|
37 |
+
### 🤗 With Hugging Face Transformers
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
41 |
+
|
42 |
+
model_id = "VincentGOURBIN/voxtral-small-8bit-mixed"
|
43 |
+
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
46 |
+
|
47 |
+
prompt = "What is the capital of France?"
|
48 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
49 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
50 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|