File size: 7,044 Bytes
75a6148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84be6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a6148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
library_name: transformers
license: apache-2.0
base_model: google/siglip2-base-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: siglip2-finetuned-marathi-sign-language
  results: []
datasets:
- VinayHajare/Marathi-Sign-Language
language:
- mr
pipeline_tag: image-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# siglip2-finetuned-marathi-sign-language

This model is a fine-tuned version of [google/siglip2-base-patch16-224](https://huggingface.co/google/siglip2-base-patch16-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0006
- Model Preparation Time: 0.0057
- Accuracy: 0.9997

## Model description

Marathi-Sign-Language-Detection is a vision-language model fine-tuned from google/siglip2-base-patch16-224 for multi-class image classification. It is trained to recognize Marathi sign language hand gestures and map them to corresponding Devanagari characters using the SiglipForImageClassification architecture.

## Training and evaluation data

```java
Classification Report:
                precision    recall  f1-score   support

           अ     1.0000    1.0000    1.0000       404
           आ     1.0000    1.0000    1.0000       409
           इ     1.0000    1.0000    1.0000       440
           ई     0.9866    1.0000    0.9932       441
           उ     1.0000    1.0000    1.0000       479
           ऊ     1.0000    1.0000    1.0000       428
           ए     1.0000    1.0000    1.0000       457
           ऐ     1.0000    1.0000    1.0000       436
           ओ     1.0000    1.0000    1.0000       430
           औ     1.0000    1.0000    1.0000       408
           क     1.0000    1.0000    1.0000       433
           क्ष     1.0000    1.0000    1.0000       480
           ख     1.0000    1.0000    1.0000       456
           ग     1.0000    1.0000    1.0000       444
           घ     1.0000    1.0000    1.0000       480
           च     1.0000    1.0000    1.0000       463
           छ     1.0000    1.0000    1.0000       468
           ज     1.0000    1.0000    1.0000       480
           ज्ञ     1.0000    1.0000    1.0000       480
           झ     1.0000    1.0000    1.0000       480
           ट     1.0000    1.0000    1.0000       480
           ठ     1.0000    1.0000    1.0000       480
           ड     1.0000    1.0000    1.0000       480
           ढ     1.0000    1.0000    1.0000       480
           ण     1.0000    1.0000    1.0000       480
           त     1.0000    1.0000    1.0000       480
           थ     1.0000    1.0000    1.0000       480
           द     1.0000    0.9875    0.9937       480
           ध     1.0000    1.0000    1.0000       480
           न     1.0000    1.0000    1.0000       480
           प     1.0000    1.0000    1.0000       480
           फ     1.0000    1.0000    1.0000       480
           ब     1.0000    1.0000    1.0000       480
           भ     1.0000    1.0000    1.0000       480
           म     1.0000    1.0000    1.0000       480
           य     1.0000    1.0000    1.0000       480
           र     1.0000    1.0000    1.0000       484
           ल     1.0000    1.0000    1.0000       480
           ळ     1.0000    1.0000    1.0000       480
           व     1.0000    1.0000    1.0000       480
           श     1.0000    1.0000    1.0000       480
           स     1.0000    1.0000    1.0000       480
           ह     1.0000    1.0000    1.0000       480

    accuracy                         0.9997     20040
   macro avg     0.9997    0.9997    0.9997     20040
weighted avg     0.9997    0.9997    0.9997     20040
```
---

## Install Dependencies

```bash
pip install -q transformers torch pillow gradio
```

---

## Inference Code

```python
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "VinayHajare/siglip2-finetuned-marathi-sign-language"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# Marathi label mapping
id2label = {
    "0": "अ", "1": "आ", "2": "इ", "3": "ई", "4": "उ", "5": "ऊ",
    "6": "ए", "7": "ऐ", "8": "ओ", "9": "औ", "10": "क", "11": "क्ष",
    "12": "ख", "13": "ग", "14": "घ", "15": "च", "16": "छ", "17": "ज",
    "18": "ज्ञ", "19": "झ", "20": "ट", "21": "ठ", "22": "ड", "23": "ढ",
    "24": "ण", "25": "त", "26": "थ", "27": "द", "28": "ध", "29": "न",
    "30": "प", "31": "फ", "32": "ब", "33": "भ", "34": "म", "35": "य",
    "36": "र", "37": "ल", "38": "ळ", "39": "व", "40": "श", "41": "स", "42": "ह"
}

def classify_marathi_sign(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    prediction = {
        id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
    }

    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=classify_marathi_sign,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=5, label="Marathi Sign Classification"),
    title="Marathi-Sign-Language-Detection",
    description="Upload an image of a Marathi sign language hand gesture to identify the corresponding character."
)

if __name__ == "__main__":
    iface.launch()
```

---
## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------:|:--------:|
| 1.4439        | 1.0   | 940  | 0.0090          | 0.0057                 | 0.9980   |
| 0.0052        | 2.0   | 1880 | 0.0035          | 0.0057                 | 0.9993   |
| 0.0031        | 3.0   | 2820 | 0.0016          | 0.0057                 | 0.9997   |
| 0.001         | 4.0   | 3760 | 0.0010          | 0.0057                 | 0.9997   |
| 0.0007        | 5.0   | 4700 | 0.0013          | 0.0057                 | 0.9997   |
| 0.0005        | 6.0   | 5640 | 0.0006          | 0.0057                 | 0.9997   |


### Framework versions

- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1