AlexWortega commited on
Commit
c2d8e8d
·
verified ·
1 Parent(s): 82ac092

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -179
README.md CHANGED
@@ -1,199 +1,74 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
 
 
 
 
 
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+ ### English Version 🇬🇧
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ ---
4
 
5
+ #### **Model Performance Overview**
6
+ **Metrics**:
7
+ - **PESQ@200**: Perceptual Evaluation of Speech Quality (higher = better).
8
+ - **STOI@200**: Short-Time Objective Intelligibility (closer to 1 = better).
9
+ - **SI-SDR@200**: Scale-Invariant Signal-to-Distortion Ratio (higher = better).
10
+ - **SIM-O@200**: Similarity to ground truth (higher = better).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ | Model | PESQ@200 | STOI@200 | SI-SDR@200 | SIM-O@200 |
13
+ |---------------------------|----------------|---------------|-------------------|----------------|
14
+ | Original (LibriSpeech) | 4.15 | 0.997 | 27.45 ±1.09 | — |
15
+ | Parler TTS Mini v1 | 1.29 ±0.49 | 0.15 ±0.12 | 25.0 ±2.9 | 0.88 ±0.03 |
16
+ | Fish Speech 1.5 | 1.26 ±0.38 | 0.17 ±0.12 | 25.0 ±3.2 | 0.91 ±0.02 |
17
+ | **Salt-ASR Wav-Uni 1-12k ** | **1.27 ±0.40** | 0.18 ±0.09 | 20.3 ±3.69 | 0.88 ±0.02 |
18
 
19
+ ---
20
 
21
+ #### **Our Solution**
22
+ - **Method**: Extends a pre-trained LLM with audio tokens and fine-tunes on **TTS** and **ASR** tasks.
23
+ - **Training**:
24
+ - SpeechTokenizer (semantic + audio tokens) outperformed Encodec (loss explosions resolved with TF32 precision).
25
+ - Training time: **150 A100 GPU hours**.
26
+ - **Advantages**: Unified LM loss for dual tasks, minimal training overhead.
27
 
 
28
 
29
+ ---
30
 
31
+ #### **Resources**
32
+ - Code: [GitHub Repo](https://github.com/VikhrModels/Vikhr4o)
33
+ - Inference Demo: [Google Colab](https://colab.research.google.com/drive/1Poz6jNJu7-HRIkRkPVTzEqjJ2qKn4eUt)
34
+ - Reference Papers: [Vitta](https://arxiv.org/pdf/2408.05211), [Valle](https://github.com/lifeiteng/vall-e)
35
 
36
+ ---
37
 
38
+ ### Русская Версия 🇷🇺
39
 
40
+ ---
41
 
42
+ #### **Сравнение моделей**
43
+ **Метрики**:
44
+ - **PESQ@200**: Качество речи (чем выше, тем лучше).
45
+ - **STOI@200**: Разборчивость речи (ближе к 1 = лучше).
46
+ - **SI-SDR@200**: Соотношение сигнал-шум (выше = лучше).
47
+ - **SIM-O@200**: Сходство с эталоном (выше = лучше).
48
 
49
+ | Модель | PESQ@200 | STOI@200 | SI-SDR@200 | SIM-O@200 |
50
+ |--------------------------|----------------|---------------|-------------------|----------------|
51
+ | Original (LibriSpeech) | 4.15 | 0.997 | 27.45 ±1.09 | — |
52
+ | Parler TTS Mini v1 | 1.25 ±0.49 | 0.15 ±0.12 | 25.0 ±2.9 | 0.88 ±0.03 |
53
+ | Fish Speech 1.5 | 1.26 ±0.38 | 0.17 ±0.12 | 25.0 ±3.2 | 0.91 ±0.02 |
54
+ | **Salt-ASR Wav-Uni 1-12k ** | **1.27 ±0.40** | 0.18 ±0.09 | 20.3 ±3.69 | 0.88 ±0.02 |
55
 
56
+ ---
57
 
58
+ #### **Наше решение**
59
+ - **Метод**: Расширение словаря LLM аудиотокенами + дообучение на **TTS** и **ASR**.
60
+ - **Обучение**:
61
+ - SpeechTokenizer (семитические + аудиотокены) показал лучшие результаты, чем Encodec.
62
+ - Время обучения: **150 часов на A100**.
63
+ - **Преимущества**: Единая функция потерь для двух задач, минимальные затраты.
64
 
 
65
 
66
+ ---
67
 
68
+ #### **Ресурсы**
69
+ - Код: [GitHub](https://github.com/VikhrModels/Vikhr4o)
70
+ - Демо: [Google Colab](https://colab.research.google.com/drive/1Poz6jNJu7-HRIkRkPVTzEqjJ2qKn4eUt)
71
 
72
+ ---
73
 
74
+ **Примечание**: Модель поддерживает генерацию коротких фраз на английском, немецком и французском.