--- library_name: transformers license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - Venkatesh4342/pyannote-hindi-diarization model-index: - name: speaker-segmentation-fine-tuned-hi results: [] --- # speaker-segmentation-fine-tuned-hi This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the Venkatesh4342/pyannote-hindi-diarization dataset. It achieves the following results on the evaluation set: - Loss: 0.0767 - Model Preparation Time: 0.0076 - Der: 0.0269 - False Alarm: 0.0116 - Missed Detection: 0.0113 - Confusion: 0.0040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.1348 | 1.0 | 2674 | 0.1155 | 0.0076 | 0.0404 | 0.0167 | 0.0145 | 0.0093 | | 0.0936 | 2.0 | 5348 | 0.0908 | 0.0076 | 0.0319 | 0.0111 | 0.0155 | 0.0053 | | 0.0838 | 3.0 | 8022 | 0.0803 | 0.0076 | 0.0283 | 0.0111 | 0.0126 | 0.0045 | | 0.0751 | 4.0 | 10696 | 0.0779 | 0.0076 | 0.0275 | 0.0122 | 0.0111 | 0.0042 | | 0.0871 | 5.0 | 13370 | 0.0767 | 0.0076 | 0.0269 | 0.0116 | 0.0113 | 0.0040 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1