End of training
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: pyannote/segmentation-3.0
|
5 |
+
tags:
|
6 |
+
- speaker-diarization
|
7 |
+
- speaker-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- Venkatesh4342/pyannote-hindi-diarization
|
11 |
+
model-index:
|
12 |
+
- name: speaker-segmentation-fine-tuned-hi
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# speaker-segmentation-fine-tuned-hi
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the Venkatesh4342/pyannote-hindi-diarization dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0767
|
24 |
+
- Model Preparation Time: 0.0076
|
25 |
+
- Der: 0.0269
|
26 |
+
- False Alarm: 0.0116
|
27 |
+
- Missed Detection: 0.0113
|
28 |
+
- Confusion: 0.0040
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.001
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 32
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
+
- lr_scheduler_type: cosine
|
53 |
+
- num_epochs: 5.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:|
|
59 |
+
| 0.1348 | 1.0 | 2674 | 0.1155 | 0.0076 | 0.0404 | 0.0167 | 0.0145 | 0.0093 |
|
60 |
+
| 0.0936 | 2.0 | 5348 | 0.0908 | 0.0076 | 0.0319 | 0.0111 | 0.0155 | 0.0053 |
|
61 |
+
| 0.0838 | 3.0 | 8022 | 0.0803 | 0.0076 | 0.0283 | 0.0111 | 0.0126 | 0.0045 |
|
62 |
+
| 0.0751 | 4.0 | 10696 | 0.0779 | 0.0076 | 0.0275 | 0.0122 | 0.0111 | 0.0042 |
|
63 |
+
| 0.0871 | 5.0 | 13370 | 0.0767 | 0.0076 | 0.0269 | 0.0116 | 0.0113 | 0.0040 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.49.0
|
69 |
+
- Pytorch 2.6.0+cu124
|
70 |
+
- Datasets 3.4.1
|
71 |
+
- Tokenizers 0.21.1
|