Update README.md
Browse files
README.md
CHANGED
@@ -1,81 +1,147 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
4 |
-
- code
|
5 |
-
license: mit
|
6 |
language:
|
7 |
- en
|
8 |
-
|
9 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
pipeline_tag: text-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# BERT Mini Sentiment Analysis β Emotion & Text Classification Model
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
.png)
|
16 |
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
|
22 |
-
- **
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
---
|
29 |
|
30 |
## π Key Applications
|
31 |
|
|
|
|
|
32 |
| **Use Case** | **Description** |
|
33 |
-
|
34 |
-
| **Social Media
|
35 |
-
| **Customer Feedback** | Extract insights from product reviews, surveys, and support tickets |
|
36 |
-
| **Mental Health AI** | Detect emotional distress in online conversations |
|
37 |
-
| **AI Chatbots &
|
38 |
-
| **Market Research** |
|
39 |
|
40 |
---
|
41 |
|
42 |
-
## Example Usage
|
43 |
|
44 |
-
|
45 |
|
46 |
```python
|
47 |
from transformers import pipeline
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
|
52 |
-
# Analyze
|
53 |
-
|
54 |
-
|
|
|
55 |
```
|
56 |
|
57 |
-
|
|
|
|
|
58 |
|
59 |
---
|
60 |
|
61 |
-
##
|
|
|
|
|
62 |
|
63 |
| **Metric** | **Score** |
|
64 |
-
|
65 |
-
| **Accuracy** | High |
|
66 |
-
| **Inference Speed** | β‘ Ultra-fast |
|
67 |
| **Model Size** | 11.2M Parameters |
|
68 |
-
| **
|
|
|
|
|
69 |
|
70 |
---
|
71 |
|
72 |
-
##
|
73 |
|
74 |
-
|
75 |
|
76 |
```python
|
77 |
from transformers import Trainer, TrainingArguments
|
78 |
|
|
|
79 |
training_args = TrainingArguments(
|
80 |
output_dir="./results",
|
81 |
evaluation_strategy="epoch",
|
@@ -84,54 +150,79 @@ training_args = TrainingArguments(
|
|
84 |
per_device_eval_batch_size=16,
|
85 |
num_train_epochs=3,
|
86 |
weight_decay=0.01,
|
|
|
|
|
87 |
)
|
88 |
-
```
|
89 |
-
|
90 |
-
This allows you to **adapt the model to specific domains**, such as **finance, healthcare, or customer service.**
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
#transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis
|
97 |
```
|
98 |
|
99 |
-
|
100 |
|
101 |
-
---
|
102 |
|
103 |
-
##
|
104 |
|
105 |
### **Q1: What datasets were used for fine-tuning?**
|
106 |
-
|
107 |
|
108 |
-
### **Q2:
|
109 |
-
|
110 |
|
111 |
-
### **Q3:
|
112 |
-
|
|
|
|
|
|
|
113 |
|
114 |
---
|
115 |
|
116 |
## π Additional Resources
|
117 |
-
|
118 |
-
- [
|
119 |
-
- [
|
|
|
|
|
120 |
|
121 |
---
|
122 |
|
123 |
-
##
|
124 |
|
125 |
-
|
126 |
-
If you encounter issues or have feature requests, please reach out! π―
|
127 |
|
128 |
-
**
|
|
|
|
|
|
|
|
|
129 |
|
130 |
---
|
131 |
|
132 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
|
|
|
|
|
|
3 |
language:
|
4 |
- en
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
new_version: v1.1
|
11 |
+
datasets:
|
12 |
+
- custom
|
13 |
+
- chatgpt
|
14 |
pipeline_tag: text-classification
|
15 |
+
library_name: transformers
|
16 |
+
tags:
|
17 |
+
- emotion
|
18 |
+
- classification
|
19 |
+
- text-classification
|
20 |
+
- bert
|
21 |
+
- emojis
|
22 |
+
- emotions
|
23 |
+
- v1.0
|
24 |
+
- sentiment-analysis
|
25 |
+
- nlp
|
26 |
+
- lightweight
|
27 |
+
- chatbot
|
28 |
+
- social-media
|
29 |
+
- mental-health
|
30 |
+
- short-text
|
31 |
+
- emotion-detection
|
32 |
+
- transformers
|
33 |
+
- real-time
|
34 |
+
- expressive
|
35 |
+
- ai
|
36 |
+
- machine-learning
|
37 |
+
- english
|
38 |
+
- inference
|
39 |
+
- edge-ai
|
40 |
+
- smart-replies
|
41 |
+
- tone-analysis
|
42 |
+
base_model:
|
43 |
+
- boltuix/bert-lite
|
44 |
+
- boltuix/bert-mini
|
45 |
---
|
46 |
|
47 |
# BERT Mini Sentiment Analysis β Emotion & Text Classification Model
|
48 |
|
49 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
50 |
+
[](https://huggingface.co/docs/transformers)
|
51 |
+
[](https://en.wikipedia.org/wiki/Natural_language_processing)
|
52 |
+
[](https://huggingface.co/tasks/text-classification)
|
53 |
+
[](https://huggingface.co/boltuix/bert-mini)
|
54 |
+
[](https://en.wikipedia.org/wiki/English_language)
|
55 |
+
[](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
|
56 |
+
|
57 |
+
|
58 |
.png)
|
59 |
|
60 |
+
---
|
61 |
+
|
62 |
+
## π Overview
|
63 |
|
64 |
+
The **[BERT Mini Sentiment Analysis](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)** model is a **lightweight, high-performance transformer** fine-tuned from **[Boltuix's BERT Mini](https://huggingface.co/boltuix/bert-mini)** for **emotion-based sentiment analysis**. It excels at classifying text into emotional categories such as **happiness**, **sadness**, **anger**, and more, making it ideal for understanding human emotions in text.
|
65 |
|
66 |
+
With only **11.2M parameters**, this model is **fast, efficient**, and tailored for **low-resource environments** like mobile devices, edge computing, and real-time applications. Whether you're analyzing social media trends, customer feedback, or building sentiment-aware chatbots, this model delivers **robust performance** with minimal computational overhead.
|
67 |
+
|
68 |
+
---
|
69 |
+
|
70 |
+
## π οΈ Model Details
|
71 |
+
|
72 |
+
- **Model Name:** BERT Mini Sentiment Analysis
|
73 |
+
- **Developed by:** Varnika S
|
74 |
+
- **Model Type:** Transformer (BERT-based)
|
75 |
+
- **Base Model:** [Boltuix BERT Mini](https://huggingface.co/boltuix/bert-mini)
|
76 |
+
- **Language:** English (en)
|
77 |
+
- **License:** [MIT](https://opensource.org/licenses/MIT)
|
78 |
+
- **Parameters:** 11.2M
|
79 |
+
- **Pipeline Tag:** Text Classification
|
80 |
+
- **Library:** Transformers (Hugging Face)
|
81 |
+
|
82 |
+
This model is fine-tuned on an **emotion-labeled dataset**, ensuring high accuracy in detecting nuanced emotional states. Its compact size and optimized architecture make it perfect for **real-time applications** and **resource-constrained environments**.
|
83 |
|
84 |
---
|
85 |
|
86 |
## π Key Applications
|
87 |
|
88 |
+
Explore the versatile use cases of this model:
|
89 |
+
|
90 |
| **Use Case** | **Description** |
|
91 |
+
|--------------|-----------------|
|
92 |
+
| **Social Media Monitoring** | Track sentiment trends on platforms like Twitter, Reddit, and Instagram to understand audience emotions. |
|
93 |
+
| **Customer Feedback Analysis** | Extract actionable insights from product reviews, surveys, and support tickets. |
|
94 |
+
| **Mental Health AI** | Detect emotional distress or mood patterns in online conversations for proactive interventions. |
|
95 |
+
| **AI Chatbots & Assistants** | Build sentiment-aware chatbots that respond empathetically to user emotions. |
|
96 |
+
| **Market Research** | Analyze audience reactions to products, campaigns, or services for data-driven decisions. |
|
97 |
|
98 |
---
|
99 |
|
100 |
+
## π» Example Usage
|
101 |
|
102 |
+
Get started with the model using the **Hugging Face Transformers** library. Below is a simple example to classify text sentiment:
|
103 |
|
104 |
```python
|
105 |
from transformers import pipeline
|
106 |
|
107 |
+
# Initialize the sentiment analysis pipeline
|
108 |
+
sentiment_analyzer = pipeline("text-classification", model="Varnikasiva/sentiment-classification-bert-mini")
|
109 |
|
110 |
+
# Analyze text
|
111 |
+
text = "I feel amazing today!"
|
112 |
+
result = sentiment_analyzer(text)
|
113 |
+
print(result) # Output: [{'label': 'happy', 'score': 0.98}]
|
114 |
```
|
115 |
|
116 |
+
π **Try it now**: [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
|
117 |
+
|
118 |
+
For more advanced usage, check out the [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers).
|
119 |
|
120 |
---
|
121 |
|
122 |
+
## π Model Performance
|
123 |
+
|
124 |
+
The model delivers **high accuracy** and **ultra-fast inference**, making it a top choice for real-time applications.
|
125 |
|
126 |
| **Metric** | **Score** |
|
127 |
+
|------------|-----------|
|
128 |
+
| **Accuracy** | High (fine-tuned on emotion-labeled dataset) |
|
129 |
+
| **Inference Speed** | β‘ Ultra-fast (optimized for low-latency) |
|
130 |
| **Model Size** | 11.2M Parameters |
|
131 |
+
| **Training Data** | Emotion-Labeled Dataset |
|
132 |
+
|
133 |
+
The model's lightweight design ensures **low memory usage** and **high throughput**, even on edge devices.
|
134 |
|
135 |
---
|
136 |
|
137 |
+
## π οΈ Fine-Tuning Guide
|
138 |
|
139 |
+
Want to adapt the model for your specific domain (e.g., finance, healthcare, or customer service)? You can fine-tune it further using **Hugging Face's Trainer API** or **PyTorch Lightning**. Here's a sample setup:
|
140 |
|
141 |
```python
|
142 |
from transformers import Trainer, TrainingArguments
|
143 |
|
144 |
+
# Define training arguments
|
145 |
training_args = TrainingArguments(
|
146 |
output_dir="./results",
|
147 |
evaluation_strategy="epoch",
|
|
|
150 |
per_device_eval_batch_size=16,
|
151 |
num_train_epochs=3,
|
152 |
weight_decay=0.01,
|
153 |
+
save_strategy="epoch",
|
154 |
+
logging_dir="./logs",
|
155 |
)
|
|
|
|
|
|
|
156 |
|
157 |
+
# Initialize Trainer
|
158 |
+
trainer = Trainer(
|
159 |
+
model=model,
|
160 |
+
args=training_args,
|
161 |
+
train_dataset=train_dataset,
|
162 |
+
eval_dataset=eval_dataset,
|
163 |
+
)
|
164 |
|
165 |
+
# Start fine-tuning
|
166 |
+
trainer.train()
|
|
|
167 |
```
|
168 |
|
169 |
+
This setup allows you to **customize the model** for domain-specific tasks with minimal effort.
|
170 |
|
171 |
+
---
|
172 |
|
173 |
+
## β Frequently Asked Questions (FAQ)
|
174 |
|
175 |
### **Q1: What datasets were used for fine-tuning?**
|
176 |
+
The model was fine-tuned on a **curated emotion-labeled dataset**, enabling it to accurately detect emotions like happiness, sadness, anger, and more.
|
177 |
|
178 |
+
### **Q2: Is this model suitable for real-time applications?**
|
179 |
+
Absolutely! Its **compact size** and **optimized inference speed** make it ideal for real-time use cases like chatbots, social media monitoring, and live sentiment analysis.
|
180 |
|
181 |
+
### **Q3: Can I fine-tune this model for my own use case?**
|
182 |
+
Yes! Use the **Hugging Face Trainer API** or **PyTorch Lightning** to fine-tune the model on your dataset for enhanced performance in specific domains.
|
183 |
+
|
184 |
+
### **Q4: What makes this model different from other BERT models?**
|
185 |
+
This model is based on **Boltuix's BERT Mini**, a lightweight version of BERT with only 11.2M parameters, fine-tuned specifically for **emotion-based sentiment analysis**. It balances performance and efficiency, making it perfect for resource-constrained environments.
|
186 |
|
187 |
---
|
188 |
|
189 |
## π Additional Resources
|
190 |
+
|
191 |
+
- π [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers)
|
192 |
+
- π§ [Boltuix BERT Mini Model](https://huggingface.co/boltuix/bert-mini)
|
193 |
+
- π [MIT License](https://opensource.org/licenses/MIT)
|
194 |
+
- π [Guide to Fine-Tuning BERT Models](https://huggingface.co/docs/transformers/training)
|
195 |
|
196 |
---
|
197 |
|
198 |
+
## π€ Contribute & Collaborate
|
199 |
|
200 |
+
We welcome contributions, feedback, and ideas to enhance this model! Whether it's improving performance, adding new features, or exploring new applications, your input is valuable.
|
|
|
201 |
|
202 |
+
- **Report Issues:** Open an issue on the [Hugging Face model page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini).
|
203 |
+
- **Suggest Features:** Share your ideas for extending the model's capabilities.
|
204 |
+
- **Collaborate:** Interested in research or building applications? Reach out!
|
205 |
+
|
206 |
+
π¬ **Contact:** [[email protected]](mailto:[email protected])
|
207 |
|
208 |
---
|
209 |
|
210 |
+
## π Why Choose This Model?
|
211 |
+
|
212 |
+
- **Lightweight & Efficient:** Only 11.2M parameters for fast inference on low-resource devices.
|
213 |
+
- **Emotion-Focused:** Fine-tuned for nuanced emotion detection, not just positive/negative sentiment.
|
214 |
+
- **Open-Source:** Licensed under MIT for flexible use in commercial and research projects.
|
215 |
+
- **Easy to Use:** Seamless integration with Hugging Face's Transformers library.
|
216 |
+
- **Versatile:** Applicable to social media, customer feedback, mental health, and more.
|
217 |
+
|
218 |
+
---
|
219 |
|
220 |
+
## π― Get Started Today!
|
221 |
|
222 |
+
Ready to dive into emotion-based sentiment analysis? Head over to the [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini) to explore the model, try the demo, or download it for your project.
|
223 |
+
|
224 |
+
**Happy Coding! π**
|
225 |
+
|
226 |
+
---
|
227 |
|
228 |
+
*Tags: #transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis*
|