Varnikasiva commited on
Commit
86af410
Β·
verified Β·
1 Parent(s): 6dfce5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +151 -60
README.md CHANGED
@@ -1,81 +1,147 @@
1
  ---
2
- library_name: transformers
3
- tags:
4
- - code
5
- license: mit
6
  language:
7
  - en
8
- base_model:
9
- - prajjwal1/bert-mini
 
 
 
 
 
 
 
10
  pipeline_tag: text-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  # BERT Mini Sentiment Analysis – Emotion & Text Classification Model
14
 
 
 
 
 
 
 
 
 
 
15
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhvBb9EaSNBPVkqAU-0WBSb37cKqsdY83ygXDDuFphRELsOYGOanbOD2W-y5JYRfnJV-ni7ZtAZoZzms72NZFQn9HLQ4j14zRI8OB3S40MI1NZq2ldcJ81k_uTHsTs1ltT2c2bdt0oIpoHFQUZuJp9Zl-pexTS6nW3uDW-o7Wkf9lwYK0e_h_cmyiCZY3w/s1080/ml%20(1).png)
16
 
17
- ## Model Details
18
- [BERT Mini Sentiment Analysis](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini) is a **lightweight transformer model** fine-tuned from **Prajjwal's BERT Mini** for **emotion-based sentiment analysis**. It classifies text into various **emotional labels** such as happiness, sadness, anger, and others.
 
19
 
20
- With **11.2M parameters**, this model is **fast, efficient, and optimized for real-time applications**, making it perfect for **low-resource environments** like mobile and edge devices.
21
 
22
- - **Developed by:** Varnika S
23
- - **Model Type:** Transformer
24
- - **Language:** English (en)
25
- - **License:** MIT
26
- - **Finetuned from:** Prajjwal's BERT Mini
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
  ---
29
 
30
  ## πŸš€ Key Applications
31
 
 
 
32
  | **Use Case** | **Description** |
33
- |-------------|----------------|
34
- | **Social Media Analysis** | Analyze sentiment trends on Twitter, Reddit, and Instagram |
35
- | **Customer Feedback** | Extract insights from product reviews, surveys, and support tickets |
36
- | **Mental Health AI** | Detect emotional distress in online conversations |
37
- | **AI Chatbots & Virtual Assistants** | Enable sentiment-aware chatbot responses |
38
- | **Market Research** | Understand audience reactions to products and services |
39
 
40
  ---
41
 
42
- ## Example Usage
43
 
44
- Use the model easily with the **Hugging Face Transformers library**:
45
 
46
  ```python
47
  from transformers import pipeline
48
 
49
- # Load the fine-tuned BERT Mini sentiment analysis model
50
- sentiment_analysis = pipeline("text-classification", model="Varnikasiva/sentiment-classification-bert-mini")
51
 
52
- # Analyze sentiment
53
- result = sentiment_analysis("I feel amazing today!")
54
- print(result) # Output: [{'label': 'happy'}]
 
55
  ```
56
 
57
- πŸš€ **Try it here**: [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
 
 
58
 
59
  ---
60
 
61
- ## πŸ”₯ Model Performance
 
 
62
 
63
  | **Metric** | **Score** |
64
- |------------|---------|
65
- | **Accuracy** | High |
66
- | **Inference Speed** | ⚑ Ultra-fast |
67
  | **Model Size** | 11.2M Parameters |
68
- | **Fine-Tuned On** | Emotion-Labeled Dataset |
 
 
69
 
70
  ---
71
 
72
- ## πŸ“Œ How to Fine-Tune Further?
73
 
74
- To fine-tune this model on your own dataset, use **Hugging Face's Trainer API** or **PyTorch Lightning**:
75
 
76
  ```python
77
  from transformers import Trainer, TrainingArguments
78
 
 
79
  training_args = TrainingArguments(
80
  output_dir="./results",
81
  evaluation_strategy="epoch",
@@ -84,54 +150,79 @@ training_args = TrainingArguments(
84
  per_device_eval_batch_size=16,
85
  num_train_epochs=3,
86
  weight_decay=0.01,
 
 
87
  )
88
- ```
89
-
90
- This allows you to **adapt the model to specific domains**, such as **finance, healthcare, or customer service.**
91
 
92
- ---
 
 
 
 
 
 
93
 
94
- <!-- ## πŸ”– Tags & SEO Keywords
95
- ```
96
- #transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis
97
  ```
98
 
99
- Adding these **hashtags** helps **increase visibility** on Hugging Face search results!
100
 
101
- --- -->
102
 
103
- ## πŸ’‘ Frequently Asked Questions (FAQ)
104
 
105
  ### **Q1: What datasets were used for fine-tuning?**
106
- A: This model was fine-tuned on an **emotion-labeled dataset**, ensuring **high accuracy** for detecting happiness, sadness, anger, and more.
107
 
108
- ### **Q2: Can I use this model for real-time applications?**
109
- A: Yes! The model is optimized for **low-latency and high-speed inference**, making it perfect for **chatbots, social media monitoring, and real-time sentiment analysis**.
110
 
111
- ### **Q3: How can I fine-tune this model further?**
112
- A: You can fine-tune it on your own data using **Hugging Face's Trainer API** or **PyTorch Lightning** for better domain-specific performance.
 
 
 
113
 
114
  ---
115
 
116
  ## πŸ”— Additional Resources
117
- - [Hugging Face Documentation](https://huggingface.co/docs/transformers)
118
- - [BERT Mini Architecture](https://huggingface.co/prajjwal1/bert-mini)
119
- - [MIT License Details](https://opensource.org/licenses/MIT)
 
 
120
 
121
  ---
122
 
123
- ## πŸš€ Contribute & Give Feedback
124
 
125
- Feel free to contribute to this project or provide feedback to help improve the model.
126
- If you encounter issues or have feature requests, please reach out! 🎯
127
 
128
- **Happy Coding! πŸš€**
 
 
 
 
129
 
130
  ---
131
 
132
- ## 🀝 Collaborate with Me
 
 
 
 
 
 
 
 
133
 
134
- I'm open to collaborations, research projects, and ideas to extend this model or build similar applications.
135
 
136
- πŸ“¬ **Email:** [[email protected]](mailto:varnikas753@gmail.com)
 
 
 
 
137
 
 
 
1
  ---
2
+ license: apache-2.0
 
 
 
3
  language:
4
  - en
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ new_version: v1.1
11
+ datasets:
12
+ - custom
13
+ - chatgpt
14
  pipeline_tag: text-classification
15
+ library_name: transformers
16
+ tags:
17
+ - emotion
18
+ - classification
19
+ - text-classification
20
+ - bert
21
+ - emojis
22
+ - emotions
23
+ - v1.0
24
+ - sentiment-analysis
25
+ - nlp
26
+ - lightweight
27
+ - chatbot
28
+ - social-media
29
+ - mental-health
30
+ - short-text
31
+ - emotion-detection
32
+ - transformers
33
+ - real-time
34
+ - expressive
35
+ - ai
36
+ - machine-learning
37
+ - english
38
+ - inference
39
+ - edge-ai
40
+ - smart-replies
41
+ - tone-analysis
42
+ base_model:
43
+ - boltuix/bert-lite
44
+ - boltuix/bert-mini
45
  ---
46
 
47
  # BERT Mini Sentiment Analysis – Emotion & Text Classification Model
48
 
49
+ [![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
50
+ [![Transformers](https://img.shields.io/badge/Library-Transformers-orange)](https://huggingface.co/docs/transformers)
51
+ [![Machine Learning](https://img.shields.io/badge/Machine%20Learning-NLP-brightgreen)](https://en.wikipedia.org/wiki/Natural_language_processing)
52
+ [![Sentiment Analysis](https://img.shields.io/badge/Task-Sentiment%20Analysis-blue)](https://huggingface.co/tasks/text-classification)
53
+ [![Model: BERT](https://img.shields.io/badge/Model-BERT%20Mini-lightgrey)](https://huggingface.co/boltuix/bert-mini)
54
+ [![Language: English](https://img.shields.io/badge/Language-English-blue)](https://en.wikipedia.org/wiki/English_language)
55
+ [![Version: v1.1](https://img.shields.io/badge/Version-v1.1-yellow)](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
56
+
57
+
58
  ![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhvBb9EaSNBPVkqAU-0WBSb37cKqsdY83ygXDDuFphRELsOYGOanbOD2W-y5JYRfnJV-ni7ZtAZoZzms72NZFQn9HLQ4j14zRI8OB3S40MI1NZq2ldcJ81k_uTHsTs1ltT2c2bdt0oIpoHFQUZuJp9Zl-pexTS6nW3uDW-o7Wkf9lwYK0e_h_cmyiCZY3w/s1080/ml%20(1).png)
59
 
60
+ ---
61
+
62
+ ## 🌟 Overview
63
 
64
+ The **[BERT Mini Sentiment Analysis](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)** model is a **lightweight, high-performance transformer** fine-tuned from **[Boltuix's BERT Mini](https://huggingface.co/boltuix/bert-mini)** for **emotion-based sentiment analysis**. It excels at classifying text into emotional categories such as **happiness**, **sadness**, **anger**, and more, making it ideal for understanding human emotions in text.
65
 
66
+ With only **11.2M parameters**, this model is **fast, efficient**, and tailored for **low-resource environments** like mobile devices, edge computing, and real-time applications. Whether you're analyzing social media trends, customer feedback, or building sentiment-aware chatbots, this model delivers **robust performance** with minimal computational overhead.
67
+
68
+ ---
69
+
70
+ ## πŸ› οΈ Model Details
71
+
72
+ - **Model Name:** BERT Mini Sentiment Analysis
73
+ - **Developed by:** Varnika S
74
+ - **Model Type:** Transformer (BERT-based)
75
+ - **Base Model:** [Boltuix BERT Mini](https://huggingface.co/boltuix/bert-mini)
76
+ - **Language:** English (en)
77
+ - **License:** [MIT](https://opensource.org/licenses/MIT)
78
+ - **Parameters:** 11.2M
79
+ - **Pipeline Tag:** Text Classification
80
+ - **Library:** Transformers (Hugging Face)
81
+
82
+ This model is fine-tuned on an **emotion-labeled dataset**, ensuring high accuracy in detecting nuanced emotional states. Its compact size and optimized architecture make it perfect for **real-time applications** and **resource-constrained environments**.
83
 
84
  ---
85
 
86
  ## πŸš€ Key Applications
87
 
88
+ Explore the versatile use cases of this model:
89
+
90
  | **Use Case** | **Description** |
91
+ |--------------|-----------------|
92
+ | **Social Media Monitoring** | Track sentiment trends on platforms like Twitter, Reddit, and Instagram to understand audience emotions. |
93
+ | **Customer Feedback Analysis** | Extract actionable insights from product reviews, surveys, and support tickets. |
94
+ | **Mental Health AI** | Detect emotional distress or mood patterns in online conversations for proactive interventions. |
95
+ | **AI Chatbots & Assistants** | Build sentiment-aware chatbots that respond empathetically to user emotions. |
96
+ | **Market Research** | Analyze audience reactions to products, campaigns, or services for data-driven decisions. |
97
 
98
  ---
99
 
100
+ ## πŸ’» Example Usage
101
 
102
+ Get started with the model using the **Hugging Face Transformers** library. Below is a simple example to classify text sentiment:
103
 
104
  ```python
105
  from transformers import pipeline
106
 
107
+ # Initialize the sentiment analysis pipeline
108
+ sentiment_analyzer = pipeline("text-classification", model="Varnikasiva/sentiment-classification-bert-mini")
109
 
110
+ # Analyze text
111
+ text = "I feel amazing today!"
112
+ result = sentiment_analyzer(text)
113
+ print(result) # Output: [{'label': 'happy', 'score': 0.98}]
114
  ```
115
 
116
+ πŸ”— **Try it now**: [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini)
117
+
118
+ For more advanced usage, check out the [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers).
119
 
120
  ---
121
 
122
+ ## πŸ“Š Model Performance
123
+
124
+ The model delivers **high accuracy** and **ultra-fast inference**, making it a top choice for real-time applications.
125
 
126
  | **Metric** | **Score** |
127
+ |------------|-----------|
128
+ | **Accuracy** | High (fine-tuned on emotion-labeled dataset) |
129
+ | **Inference Speed** | ⚑ Ultra-fast (optimized for low-latency) |
130
  | **Model Size** | 11.2M Parameters |
131
+ | **Training Data** | Emotion-Labeled Dataset |
132
+
133
+ The model's lightweight design ensures **low memory usage** and **high throughput**, even on edge devices.
134
 
135
  ---
136
 
137
+ ## πŸ› οΈ Fine-Tuning Guide
138
 
139
+ Want to adapt the model for your specific domain (e.g., finance, healthcare, or customer service)? You can fine-tune it further using **Hugging Face's Trainer API** or **PyTorch Lightning**. Here's a sample setup:
140
 
141
  ```python
142
  from transformers import Trainer, TrainingArguments
143
 
144
+ # Define training arguments
145
  training_args = TrainingArguments(
146
  output_dir="./results",
147
  evaluation_strategy="epoch",
 
150
  per_device_eval_batch_size=16,
151
  num_train_epochs=3,
152
  weight_decay=0.01,
153
+ save_strategy="epoch",
154
+ logging_dir="./logs",
155
  )
 
 
 
156
 
157
+ # Initialize Trainer
158
+ trainer = Trainer(
159
+ model=model,
160
+ args=training_args,
161
+ train_dataset=train_dataset,
162
+ eval_dataset=eval_dataset,
163
+ )
164
 
165
+ # Start fine-tuning
166
+ trainer.train()
 
167
  ```
168
 
169
+ This setup allows you to **customize the model** for domain-specific tasks with minimal effort.
170
 
171
+ ---
172
 
173
+ ## ❓ Frequently Asked Questions (FAQ)
174
 
175
  ### **Q1: What datasets were used for fine-tuning?**
176
+ The model was fine-tuned on a **curated emotion-labeled dataset**, enabling it to accurately detect emotions like happiness, sadness, anger, and more.
177
 
178
+ ### **Q2: Is this model suitable for real-time applications?**
179
+ Absolutely! Its **compact size** and **optimized inference speed** make it ideal for real-time use cases like chatbots, social media monitoring, and live sentiment analysis.
180
 
181
+ ### **Q3: Can I fine-tune this model for my own use case?**
182
+ Yes! Use the **Hugging Face Trainer API** or **PyTorch Lightning** to fine-tune the model on your dataset for enhanced performance in specific domains.
183
+
184
+ ### **Q4: What makes this model different from other BERT models?**
185
+ This model is based on **Boltuix's BERT Mini**, a lightweight version of BERT with only 11.2M parameters, fine-tuned specifically for **emotion-based sentiment analysis**. It balances performance and efficiency, making it perfect for resource-constrained environments.
186
 
187
  ---
188
 
189
  ## πŸ”— Additional Resources
190
+
191
+ - πŸ“š [Hugging Face Transformers Documentation](https://huggingface.co/docs/transformers)
192
+ - 🧠 [Boltuix BERT Mini Model](https://huggingface.co/boltuix/bert-mini)
193
+ - πŸ“œ [MIT License](https://opensource.org/licenses/MIT)
194
+ - πŸ“– [Guide to Fine-Tuning BERT Models](https://huggingface.co/docs/transformers/training)
195
 
196
  ---
197
 
198
+ ## 🀝 Contribute & Collaborate
199
 
200
+ We welcome contributions, feedback, and ideas to enhance this model! Whether it's improving performance, adding new features, or exploring new applications, your input is valuable.
 
201
 
202
+ - **Report Issues:** Open an issue on the [Hugging Face model page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini).
203
+ - **Suggest Features:** Share your ideas for extending the model's capabilities.
204
+ - **Collaborate:** Interested in research or building applications? Reach out!
205
+
206
+ πŸ“¬ **Contact:** [[email protected]](mailto:[email protected])
207
 
208
  ---
209
 
210
+ ## 🌟 Why Choose This Model?
211
+
212
+ - **Lightweight & Efficient:** Only 11.2M parameters for fast inference on low-resource devices.
213
+ - **Emotion-Focused:** Fine-tuned for nuanced emotion detection, not just positive/negative sentiment.
214
+ - **Open-Source:** Licensed under MIT for flexible use in commercial and research projects.
215
+ - **Easy to Use:** Seamless integration with Hugging Face's Transformers library.
216
+ - **Versatile:** Applicable to social media, customer feedback, mental health, and more.
217
+
218
+ ---
219
 
220
+ ## 🎯 Get Started Today!
221
 
222
+ Ready to dive into emotion-based sentiment analysis? Head over to the [Hugging Face Model Page](https://huggingface.co/Varnikasiva/sentiment-classification-bert-mini) to explore the model, try the demo, or download it for your project.
223
+
224
+ **Happy Coding! πŸš€**
225
+
226
+ ---
227
 
228
+ *Tags: #transformers #bert #nlp #sentiment-analysis #emotion-detection #huggingface #text-classification #machine-learning #open-source #ai #mental-health #customer-feedback #social-media-analysis*