Text Generation
Transformers
Safetensors
English
qwen3
esper
esper-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-8b
8b
reasoning
code
code-instruct
python
javascript
dev-ops
jenkins
terraform
scripting
powershell
azure
aws
gcp
cloud
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
model card
Browse files
README.md
CHANGED
@@ -1 +1,124 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: transformers
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- esper
|
8 |
+
- esper-3
|
9 |
+
- valiant
|
10 |
+
- valiant-labs
|
11 |
+
- qwen
|
12 |
+
- qwen-3
|
13 |
+
- qwen-3-8b
|
14 |
+
- 8b
|
15 |
+
- reasoning
|
16 |
+
- code
|
17 |
+
- code-instruct
|
18 |
+
- python
|
19 |
+
- javascript
|
20 |
+
- dev-ops
|
21 |
+
- jenkins
|
22 |
+
- terraform
|
23 |
+
- scripting
|
24 |
+
- powershell
|
25 |
+
- azure
|
26 |
+
- aws
|
27 |
+
- gcp
|
28 |
+
- cloud
|
29 |
+
- problem-solving
|
30 |
+
- architect
|
31 |
+
- engineer
|
32 |
+
- developer
|
33 |
+
- creative
|
34 |
+
- analytical
|
35 |
+
- expert
|
36 |
+
- rationality
|
37 |
+
- conversational
|
38 |
+
- chat
|
39 |
+
- instruct
|
40 |
+
base_model: Qwen/Qwen3-8B
|
41 |
+
datasets:
|
42 |
+
- sequelbox/Titanium2.1-DeepSeek-R1
|
43 |
+
- sequelbox/Tachibana2-DeepSeek-R1
|
44 |
+
- sequelbox/Raiden-DeepSeek-R1
|
45 |
+
license: apache-2.0
|
46 |
+
---
|
47 |
+
|
48 |
+
|
49 |
+
**[Support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)**
|
50 |
+
|
51 |
+
|
52 |
+
Esper 3: [Qwen3-4B](https://huggingface.co/ValiantLabs/Qwen3-4B-Esper3), [Qwen3-8B](https://huggingface.co/ValiantLabs/Qwen3-8B-Esper3)
|
53 |
+
|
54 |
+
|
55 |
+
Esper 3 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3.
|
56 |
+
- Finetuned on our [DevOps and architecture reasoning](https://huggingface.co/datasets/sequelbox/Titanium2.1-DeepSeek-R1) and [code reasoning](https://huggingface.co/datasets/sequelbox/Tachibana2-DeepSeek-R1) data generated with Deepseek R1!
|
57 |
+
- Improved [general and creative reasoning](https://huggingface.co/datasets/sequelbox/Raiden-DeepSeek-R1) to supplement problem-solving and general chat performance.
|
58 |
+
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference!
|
59 |
+
|
60 |
+
|
61 |
+
## Prompting Guide
|
62 |
+
Esper 3 uses the [Qwen 3](https://huggingface.co/Qwen/Qwen3-8B) prompt format.
|
63 |
+
|
64 |
+
Esper 3 is a reasoning finetune; **we recommend enable_thinking=True for all chats.**
|
65 |
+
|
66 |
+
Example inference script to get started:
|
67 |
+
|
68 |
+
```python
|
69 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
70 |
+
|
71 |
+
model_name = "ValiantLabs/Qwen3-8B-Esper3"
|
72 |
+
|
73 |
+
# load the tokenizer and the model
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
75 |
+
model = AutoModelForCausalLM.from_pretrained(
|
76 |
+
model_name,
|
77 |
+
torch_dtype="auto",
|
78 |
+
device_map="auto"
|
79 |
+
)
|
80 |
+
|
81 |
+
# prepare the model input
|
82 |
+
prompt = "Write a Terraform configuration that uses the `aws_ami` data source to find the latest Amazon Linux 2 AMI. Then, provision an EC2 instance using this dynamically determined AMI ID."
|
83 |
+
messages = [
|
84 |
+
{"role": "user", "content": prompt}
|
85 |
+
]
|
86 |
+
text = tokenizer.apply_chat_template(
|
87 |
+
messages,
|
88 |
+
tokenize=False,
|
89 |
+
add_generation_prompt=True,
|
90 |
+
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
|
91 |
+
)
|
92 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
93 |
+
|
94 |
+
# conduct text completion
|
95 |
+
generated_ids = model.generate(
|
96 |
+
**model_inputs,
|
97 |
+
max_new_tokens=32768
|
98 |
+
)
|
99 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
100 |
+
|
101 |
+
# parsing thinking content
|
102 |
+
try:
|
103 |
+
# rindex finding 151668 (</think>)
|
104 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
105 |
+
except ValueError:
|
106 |
+
index = 0
|
107 |
+
|
108 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
109 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
110 |
+
|
111 |
+
print("thinking content:", thinking_content)
|
112 |
+
print("content:", content)
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+

|
117 |
+
|
118 |
+
|
119 |
+
Esper 3 is created by [Valiant Labs.](http://valiantlabs.ca/)
|
120 |
+
|
121 |
+
[Check out our HuggingFace page to see all of our models!](https://huggingface.co/ValiantLabs)
|
122 |
+
|
123 |
+
We care about open source. For everyone to use.
|
124 |
+
|