File size: 2,970 Bytes
8c0676c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- text-classification
- ai-detection
- human-vs-ai
- distilbert
- pytorch
language:
- en
datasets:
- Hello-SimpleAI/HC3
metrics:
- accuracy
- f1
pipeline_tag: text-classification
widget:
- text: "The quick brown fox jumps over the lazy dog. This is a simple sentence that demonstrates basic grammar."
example_title: "Human-like text"
- text: "In conclusion, artificial intelligence represents a transformative technology that will continue to evolve and impact various sectors of society. Its applications are vast and its potential is limitless."
example_title: "AI-like text"
---
# AI Text Detector - HC3 Dataset
This model is a fine-tuned DistilBERT model for detecting AI-generated text vs human-written text. It was trained on the HC3 dataset from Hugging Face.
## Model Details
- **Base Model**: distilbert-base-uncased
- **Task**: Binary text classification (Human vs AI-generated)
- **Dataset**: HC3 (Human ChatGPT Comparison Corpus)
- **Training Framework**: PyTorch + Transformers
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("VSAsteroid/ai-text-detector-hc3")
model = AutoModelForSequenceClassification.from_pretrained("VSAsteroid/ai-text-detector-hc3")
# Example prediction
text = "Your text here"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=256)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get prediction
predicted_class = torch.argmax(predictions, dim=-1).item()
confidence = torch.max(predictions).item()
label = "AI-Generated" if predicted_class == 1 else "Human-Written"
print(f"Prediction: {label} (Confidence: {confidence:.3f})")
```
## Labels
- 0: Human-Written
- 1: AI-Generated
## Training Details
- **Epochs**: 2-3
- **Batch Size**: 8-16
- **Learning Rate**: 2e-5
- **Max Sequence Length**: 256
- **Optimizer**: AdamW with linear scheduling
## Performance
The model achieves good performance on distinguishing between human-written and AI-generated text, particularly on the types of content present in the HC3 dataset.
## Limitations
- The model is trained specifically on the HC3 dataset and may not generalize well to other types of text
- Performance may vary depending on the AI model that generated the text
- Short texts may be more difficult to classify accurately
## Citation
If you use this model, please cite the HC3 dataset:
```bibtex
@misc{guo2023close,
title={How Close is ChatGPT to Human Experts? Comparison Corpus, Evaluation, and Detection},
author={Biyang Guo and Xin Zhang and Ziyuan Wang and Minqi Jiang and Jinran Nie and Yuxuan Ding and Jianwei Yue and Yupeng Wu},
year={2023},
eprint={2301.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|