shenyunhang commited on
Commit
1a04f1b
·
1 Parent(s): f6e9985
added_tokens.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2MTPForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen2.Qwen2MTPConfig",
7
+ "AutoModelForCausalLM": "modeling_qwen2.Qwen2MTPForCausalLM"
8
+ },
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 151643,
11
+ "eos_token_id": 151645,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 3584,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 18944,
16
+ "max_position_embeddings": 32768,
17
+ "max_window_layers": 28,
18
+ "model_type": "qwen2_mtp",
19
+ "num_attention_heads": 28,
20
+ "num_hidden_layers": 38,
21
+ "num_key_value_heads": 4,
22
+ "num_nextn_predict_layers": 10,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_scaling": null,
25
+ "rope_theta": 1000000.0,
26
+ "sliding_window": null,
27
+ "speech_token_offset": 151685,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "bfloat16",
30
+ "transformers_version": "4.49.0",
31
+ "use_cache": false,
32
+ "use_sliding_window": false,
33
+ "vocab_size": 168072
34
+ }
configuration_qwen2.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Qwen2 model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Qwen2MTPConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
28
+ Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of
30
+ Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 151936):
38
+ Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`Qwen2Model`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 22016):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ num_key_value_heads (`int`, *optional*, defaults to 32):
49
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
50
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
51
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
52
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
53
+ by meanpooling all the original heads within that group. For more details checkout [this
54
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
55
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
56
+ The non-linear activation function (function or string) in the decoder.
57
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
58
+ The maximum sequence length that this model might ever be used with.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
62
+ The epsilon used by the rms normalization layers.
63
+ use_cache (`bool`, *optional*, defaults to `True`):
64
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
65
+ relevant if `config.is_decoder=True`.
66
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
67
+ Whether the model's input and output word embeddings should be tied.
68
+ rope_theta (`float`, *optional*, defaults to 10000.0):
69
+ The base period of the RoPE embeddings.
70
+ rope_scaling (`Dict`, *optional*):
71
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
72
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
73
+ accordingly.
74
+ Expected contents:
75
+ `rope_type` (`str`):
76
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
77
+ 'llama3'], with 'default' being the original RoPE implementation.
78
+ `factor` (`float`, *optional*):
79
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
80
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
81
+ original maximum pre-trained length.
82
+ `original_max_position_embeddings` (`int`, *optional*):
83
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
84
+ pretraining.
85
+ `attention_factor` (`float`, *optional*):
86
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
87
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
88
+ `factor` field to infer the suggested value.
89
+ `beta_fast` (`float`, *optional*):
90
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
91
+ ramp function. If unspecified, it defaults to 32.
92
+ `beta_slow` (`float`, *optional*):
93
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
94
+ ramp function. If unspecified, it defaults to 1.
95
+ `short_factor` (`List[float]`, *optional*):
96
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
97
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
98
+ size divided by the number of attention heads divided by 2
99
+ `long_factor` (`List[float]`, *optional*):
100
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
101
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
102
+ size divided by the number of attention heads divided by 2
103
+ `low_freq_factor` (`float`, *optional*):
104
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
105
+ `high_freq_factor` (`float`, *optional*):
106
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
107
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
108
+ Whether to use sliding window attention.
109
+ sliding_window (`int`, *optional*, defaults to 4096):
110
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
111
+ max_window_layers (`int`, *optional*, defaults to 28):
112
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
113
+ attention_dropout (`float`, *optional*, defaults to 0.0):
114
+ The dropout ratio for the attention probabilities.
115
+
116
+ ```python
117
+ >>> from transformers import Qwen2Model, Qwen2Config
118
+
119
+ >>> # Initializing a Qwen2 style configuration
120
+ >>> configuration = Qwen2Config()
121
+
122
+ >>> # Initializing a model from the Qwen2-7B style configuration
123
+ >>> model = Qwen2Model(configuration)
124
+
125
+ >>> # Accessing the model configuration
126
+ >>> configuration = model.config
127
+ ```"""
128
+
129
+ model_type = "qwen2_mtp"
130
+ keys_to_ignore_at_inference = ["past_key_values"]
131
+
132
+ # Default tensor parallel plan for base model `Qwen2`
133
+ base_model_tp_plan = {
134
+ "layers.*.self_attn.q_proj": "colwise",
135
+ "layers.*.self_attn.k_proj": "colwise",
136
+ "layers.*.self_attn.v_proj": "colwise",
137
+ "layers.*.self_attn.o_proj": "rowwise",
138
+ "layers.*.mlp.gate_proj": "colwise",
139
+ "layers.*.mlp.up_proj": "colwise",
140
+ "layers.*.mlp.down_proj": "rowwise",
141
+ }
142
+
143
+ def __init__(
144
+ self,
145
+ vocab_size=151936,
146
+ hidden_size=4096,
147
+ intermediate_size=22016,
148
+ num_hidden_layers=32,
149
+ num_attention_heads=32,
150
+ num_key_value_heads=32,
151
+ hidden_act="silu",
152
+ max_position_embeddings=32768,
153
+ initializer_range=0.02,
154
+ rms_norm_eps=1e-6,
155
+ use_cache=True,
156
+ tie_word_embeddings=False,
157
+ rope_theta=10000.0,
158
+ rope_scaling=None,
159
+ use_sliding_window=False,
160
+ sliding_window=4096,
161
+ max_window_layers=28,
162
+ attention_dropout=0.0,
163
+ num_nextn_predict_layers=1,
164
+ mtp_loss_weight=1.0,
165
+ speech_token_offset=151685,
166
+ **kwargs,
167
+ ):
168
+ self.vocab_size = vocab_size
169
+ self.max_position_embeddings = max_position_embeddings
170
+ self.hidden_size = hidden_size
171
+ self.intermediate_size = intermediate_size
172
+ self.num_hidden_layers = num_hidden_layers
173
+ self.num_attention_heads = num_attention_heads
174
+ self.use_sliding_window = use_sliding_window
175
+ self.sliding_window = sliding_window if use_sliding_window else None
176
+ self.max_window_layers = max_window_layers
177
+
178
+ # for backward compatibility
179
+ if num_key_value_heads is None:
180
+ num_key_value_heads = num_attention_heads
181
+
182
+ self.num_key_value_heads = num_key_value_heads
183
+ self.hidden_act = hidden_act
184
+ self.initializer_range = initializer_range
185
+ self.rms_norm_eps = rms_norm_eps
186
+ self.use_cache = use_cache
187
+ self.rope_theta = rope_theta
188
+ self.rope_scaling = rope_scaling
189
+ self.attention_dropout = attention_dropout
190
+ # Validate the correctness of rotary position embeddings parameters
191
+ # BC: if there is a 'type' field, move it to 'rope_type'.
192
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
193
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
194
+ rope_config_validation(self)
195
+
196
+ self.num_nextn_predict_layers = num_nextn_predict_layers
197
+ self.mtp_loss_weight = mtp_loss_weight
198
+ self.speech_token_offset = speech_token_offset
199
+
200
+ super().__init__(
201
+ tie_word_embeddings=tie_word_embeddings,
202
+ **kwargs,
203
+ )
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15a55ce0fa761976491dd2fafb8c83ff823865495d403f12b379422210bd2322
3
+ size 4992406120
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0da074d9a848809f6f82966822428685e5faab0402cf3ee213ae806919933474
3
+ size 4932751008
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0bdd8ccf2bf9dc7b22e54715c8fd32582fe5dcc9fe88870d79675a669fd48ef
3
+ size 4991495888
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc75ca5ef5cf07e49fee30ecc2da8581ed919ba782110088d3599cf39ce870c5
3
+ size 4000538944
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b683585f135b796b2951e1731681f516f0261ba29f40f339dc683a7c980ca73
3
+ size 1718688768
model.safetensors.index.json ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 20635825152
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00005.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00005.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00005.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00005.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00005.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00005.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00005.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00004-of-00005.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00004-of-00005.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00005.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00004-of-00005.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00004-of-00005.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
392
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
393
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
394
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
395
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
396
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
397
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
398
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
399
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
400
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
401
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
402
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
403
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
404
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
405
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
406
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
407
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
408
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
409
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
410
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
411
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
412
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
413
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
414
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
415
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
416
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
417
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
418
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
419
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
420
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
421
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
422
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
423
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
424
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
425
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
426
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
427
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
428
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
429
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
430
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
431
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
432
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
433
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
434
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
435
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
436
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
437
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
438
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
439
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
440
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
441
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
442
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
443
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
444
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
445
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
446
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
447
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
448
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
449
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
450
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
451
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
452
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
453
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
454
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
455
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
456
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
457
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
458
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
459
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
460
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
461
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
462
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
463
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
464
+ "model.norm.weight": "model-00004-of-00005.safetensors",
465
+ "mtp_embed_norms.0.weight": "model-00005-of-00005.safetensors",
466
+ "mtp_embed_norms.1.weight": "model-00005-of-00005.safetensors",
467
+ "mtp_embed_norms.2.weight": "model-00005-of-00005.safetensors",
468
+ "mtp_embed_norms.3.weight": "model-00005-of-00005.safetensors",
469
+ "mtp_embed_norms.4.weight": "model-00005-of-00005.safetensors",
470
+ "mtp_embed_norms.5.weight": "model-00005-of-00005.safetensors",
471
+ "mtp_embed_norms.6.weight": "model-00005-of-00005.safetensors",
472
+ "mtp_embed_norms.7.weight": "model-00005-of-00005.safetensors",
473
+ "mtp_embed_norms.8.weight": "model-00005-of-00005.safetensors",
474
+ "mtp_embed_norms.9.weight": "model-00005-of-00005.safetensors",
475
+ "mtp_hidden_norms.0.weight": "model-00005-of-00005.safetensors",
476
+ "mtp_hidden_norms.1.weight": "model-00005-of-00005.safetensors",
477
+ "mtp_hidden_norms.2.weight": "model-00005-of-00005.safetensors",
478
+ "mtp_hidden_norms.3.weight": "model-00005-of-00005.safetensors",
479
+ "mtp_hidden_norms.4.weight": "model-00005-of-00005.safetensors",
480
+ "mtp_hidden_norms.5.weight": "model-00005-of-00005.safetensors",
481
+ "mtp_hidden_norms.6.weight": "model-00005-of-00005.safetensors",
482
+ "mtp_hidden_norms.7.weight": "model-00005-of-00005.safetensors",
483
+ "mtp_hidden_norms.8.weight": "model-00005-of-00005.safetensors",
484
+ "mtp_hidden_norms.9.weight": "model-00005-of-00005.safetensors",
485
+ "mtp_projs.0.weight": "model-00005-of-00005.safetensors",
486
+ "mtp_projs.1.weight": "model-00005-of-00005.safetensors",
487
+ "mtp_projs.2.weight": "model-00005-of-00005.safetensors",
488
+ "mtp_projs.3.weight": "model-00005-of-00005.safetensors",
489
+ "mtp_projs.4.weight": "model-00005-of-00005.safetensors",
490
+ "mtp_projs.5.weight": "model-00005-of-00005.safetensors",
491
+ "mtp_projs.6.weight": "model-00005-of-00005.safetensors",
492
+ "mtp_projs.7.weight": "model-00005-of-00005.safetensors",
493
+ "mtp_projs.8.weight": "model-00005-of-00005.safetensors",
494
+ "mtp_projs.9.weight": "model-00005-of-00005.safetensors"
495
+ }
496
+ }
modeling_qwen2.py ADDED
@@ -0,0 +1,1584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/qwen2/modular_qwen2.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_qwen2.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ from typing import Callable, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ from torch import nn
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
14
+ from transformers.generation import GenerationMixin
15
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
16
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
17
+ from transformers.modeling_outputs import (
18
+ BaseModelOutputWithPast,
19
+ CausalLMOutputWithPast,
20
+ QuestionAnsweringModelOutput,
21
+ SequenceClassifierOutputWithPast,
22
+ TokenClassifierOutput,
23
+ )
24
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
25
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
26
+ from transformers.processing_utils import Unpack
27
+ from transformers.utils import (
28
+ LossKwargs,
29
+ add_code_sample_docstrings,
30
+ add_start_docstrings,
31
+ add_start_docstrings_to_model_forward,
32
+ logging,
33
+ replace_return_docstrings,
34
+ )
35
+ from .configuration_qwen2 import Qwen2MTPConfig as Qwen2Config
36
+
37
+
38
+ logger = logging.get_logger(__name__)
39
+ logger.setLevel(logging.INFO)
40
+
41
+ _CHECKPOINT_FOR_DOC = "meta-qwen2/Qwen2-2-7b-hf"
42
+ _CONFIG_FOR_DOC = "Qwen2Config"
43
+
44
+
45
+ def fixed_cross_entropy(source, target, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs):
46
+ reduction = "sum" if num_items_in_batch is not None else "mean"
47
+ loss = nn.functional.cross_entropy(source, target, ignore_index=ignore_index, reduction=reduction)
48
+ if reduction == "sum":
49
+ loss = loss / num_items_in_batch
50
+ return loss
51
+
52
+
53
+ def ForCausalLMLoss(
54
+ logits, labels, vocab_size: int, num_items_in_batch: int = None, ignore_index: int = -100, **kwargs
55
+ ):
56
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
57
+ # logits = logits.float()
58
+ labels = labels.to(logits.device)
59
+ # Shift so that tokens < n predict n
60
+ shift_logits = logits[..., :-1, :].contiguous()
61
+ shift_labels = labels[..., 1:].contiguous()
62
+
63
+ # Flatten the tokens
64
+ shift_logits = shift_logits.view(-1, vocab_size)
65
+ shift_labels = shift_labels.view(-1)
66
+ # Enable model parallelism
67
+ shift_labels = shift_labels.to(shift_logits.device)
68
+ loss = fixed_cross_entropy(shift_logits, shift_labels, num_items_in_batch, ignore_index, **kwargs)
69
+ return loss
70
+
71
+
72
+ def compute_kl_loss(logits, labels):
73
+ # import pdb;pdb.set_trace()
74
+ *_, vocab_size = logits.shape
75
+ # Convert logits to log probabilities
76
+ log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
77
+ # Convert labels to probabilities
78
+ target_probs = torch.nn.functional.softmax(labels, dim=-1)
79
+ # Define the KL Divergence loss function
80
+ loss_fct = nn.KLDivLoss(reduction='batchmean')
81
+ # Compute the loss
82
+ loss = loss_fct(log_probs.view(-1, vocab_size), target_probs.view(-1, vocab_size))
83
+ return loss
84
+
85
+
86
+ class Qwen2MLP(nn.Module):
87
+ def __init__(self, config):
88
+ super().__init__()
89
+ self.config = config
90
+ self.hidden_size = config.hidden_size
91
+ self.intermediate_size = config.intermediate_size
92
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
93
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
94
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
95
+ self.act_fn = ACT2FN[config.hidden_act]
96
+
97
+ def forward(self, x):
98
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
99
+ return down_proj
100
+
101
+
102
+ def rotate_half(x):
103
+ """Rotates half the hidden dims of the input."""
104
+ x1 = x[..., : x.shape[-1] // 2]
105
+ x2 = x[..., x.shape[-1] // 2 :]
106
+ return torch.cat((-x2, x1), dim=-1)
107
+
108
+
109
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
110
+ """Applies Rotary Position Embedding to the query and key tensors.
111
+
112
+ Args:
113
+ q (`torch.Tensor`): The query tensor.
114
+ k (`torch.Tensor`): The key tensor.
115
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
116
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
117
+ position_ids (`torch.Tensor`, *optional*):
118
+ Deprecated and unused.
119
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
120
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
121
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
122
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
123
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
124
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
125
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
126
+ Returns:
127
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
128
+ """
129
+ cos = cos.unsqueeze(unsqueeze_dim)
130
+ sin = sin.unsqueeze(unsqueeze_dim)
131
+ q_embed = (q * cos) + (rotate_half(q) * sin)
132
+ k_embed = (k * cos) + (rotate_half(k) * sin)
133
+ return q_embed, k_embed
134
+
135
+
136
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
137
+ """
138
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
139
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
140
+ """
141
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
142
+ if n_rep == 1:
143
+ return hidden_states
144
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
145
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
146
+
147
+
148
+ def eager_attention_forward(
149
+ module: nn.Module,
150
+ query: torch.Tensor,
151
+ key: torch.Tensor,
152
+ value: torch.Tensor,
153
+ attention_mask: Optional[torch.Tensor],
154
+ scaling: float,
155
+ dropout: float = 0.0,
156
+ **kwargs,
157
+ ):
158
+ key_states = repeat_kv(key, module.num_key_value_groups)
159
+ value_states = repeat_kv(value, module.num_key_value_groups)
160
+
161
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
162
+ if attention_mask is not None:
163
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
164
+ attn_weights = attn_weights + causal_mask
165
+
166
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
167
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
168
+ attn_output = torch.matmul(attn_weights, value_states)
169
+ attn_output = attn_output.transpose(1, 2).contiguous()
170
+
171
+ return attn_output, attn_weights
172
+
173
+
174
+ class Qwen2Attention(nn.Module):
175
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
176
+
177
+ def __init__(self, config: Qwen2Config, layer_idx: int):
178
+ super().__init__()
179
+ self.config = config
180
+ self.layer_idx = layer_idx
181
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
182
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
183
+ self.scaling = self.head_dim**-0.5
184
+ self.attention_dropout = config.attention_dropout
185
+ self.is_causal = True
186
+ self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
187
+ self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
188
+ self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
189
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
190
+
191
+ def forward(
192
+ self,
193
+ hidden_states: torch.Tensor,
194
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
195
+ attention_mask: Optional[torch.Tensor],
196
+ past_key_value: Optional[Cache] = None,
197
+ cache_position: Optional[torch.LongTensor] = None,
198
+ **kwargs: Unpack[FlashAttentionKwargs],
199
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
200
+ input_shape = hidden_states.shape[:-1]
201
+ hidden_shape = (*input_shape, -1, self.head_dim)
202
+
203
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
204
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
205
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
206
+
207
+ cos, sin = position_embeddings
208
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
209
+
210
+ if past_key_value is not None:
211
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
212
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
213
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
214
+
215
+ sliding_window = None
216
+ if (
217
+ self.config.use_sliding_window
218
+ and getattr(self.config, "sliding_window", None) is not None
219
+ and self.layer_idx >= self.config.max_window_layers
220
+ ):
221
+ sliding_window = self.config.sliding_window
222
+
223
+ attention_interface: Callable = eager_attention_forward
224
+ if self.config._attn_implementation != "eager":
225
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
226
+ logger.warning_once(
227
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
228
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
229
+ )
230
+ else:
231
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
232
+
233
+ attn_output, attn_weights = attention_interface(
234
+ self,
235
+ query_states,
236
+ key_states,
237
+ value_states,
238
+ attention_mask,
239
+ dropout=0.0 if not self.training else self.attention_dropout,
240
+ scaling=self.scaling,
241
+ sliding_window=sliding_window, # main diff with Llama
242
+ **kwargs,
243
+ )
244
+
245
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
246
+ attn_output = self.o_proj(attn_output)
247
+ return attn_output, attn_weights
248
+
249
+
250
+ class Qwen2RMSNorm(nn.Module):
251
+ def __init__(self, hidden_size, eps=1e-6):
252
+ """
253
+ Qwen2RMSNorm is equivalent to T5LayerNorm
254
+ """
255
+ super().__init__()
256
+ self.weight = nn.Parameter(torch.ones(hidden_size))
257
+ self.variance_epsilon = eps
258
+
259
+ def forward(self, hidden_states):
260
+ input_dtype = hidden_states.dtype
261
+ hidden_states = hidden_states.to(torch.float32)
262
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
263
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
264
+ return self.weight * hidden_states.to(input_dtype)
265
+
266
+ def extra_repr(self):
267
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
268
+
269
+
270
+ class Qwen2DecoderLayer(nn.Module):
271
+ def __init__(self, config: Qwen2Config, layer_idx: int):
272
+ super().__init__()
273
+ self.hidden_size = config.hidden_size
274
+ self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
275
+ self.mlp = Qwen2MLP(config)
276
+ self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
277
+ self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
278
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
279
+ logger.warning_once(
280
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
281
+ "unexpected results may be encountered."
282
+ )
283
+
284
+ def forward(
285
+ self,
286
+ hidden_states: torch.Tensor,
287
+ attention_mask: Optional[torch.Tensor] = None,
288
+ position_ids: Optional[torch.LongTensor] = None,
289
+ past_key_value: Optional[Cache] = None,
290
+ output_attentions: Optional[bool] = False,
291
+ use_cache: Optional[bool] = False,
292
+ cache_position: Optional[torch.LongTensor] = None,
293
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
294
+ **kwargs: Unpack[FlashAttentionKwargs],
295
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
296
+ residual = hidden_states
297
+
298
+ hidden_states = self.input_layernorm(hidden_states)
299
+
300
+ # Self Attention
301
+ hidden_states, self_attn_weights = self.self_attn(
302
+ hidden_states=hidden_states,
303
+ attention_mask=attention_mask,
304
+ position_ids=position_ids,
305
+ past_key_value=past_key_value,
306
+ output_attentions=output_attentions,
307
+ use_cache=use_cache,
308
+ cache_position=cache_position,
309
+ position_embeddings=position_embeddings,
310
+ **kwargs,
311
+ )
312
+ hidden_states = residual + hidden_states
313
+
314
+ # Fully Connected
315
+ residual = hidden_states
316
+ hidden_states = self.post_attention_layernorm(hidden_states)
317
+ hidden_states = self.mlp(hidden_states)
318
+ hidden_states = residual + hidden_states
319
+
320
+ outputs = (hidden_states,)
321
+ if output_attentions:
322
+ outputs += (self_attn_weights,)
323
+
324
+ return outputs
325
+
326
+
327
+ class Qwen2RotaryEmbedding(nn.Module):
328
+ def __init__(self, config: Qwen2Config, device=None):
329
+ super().__init__()
330
+ # BC: "rope_type" was originally "type"
331
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
332
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
333
+ else:
334
+ self.rope_type = "default"
335
+ self.max_seq_len_cached = config.max_position_embeddings
336
+ self.original_max_seq_len = config.max_position_embeddings
337
+
338
+ self.config = config
339
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
340
+
341
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
342
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
343
+ self.original_inv_freq = self.inv_freq
344
+
345
+ def _dynamic_frequency_update(self, position_ids, device):
346
+ """
347
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
348
+ 1 - growing beyond the cached sequence length (allow scaling)
349
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
350
+ """
351
+ seq_len = torch.max(position_ids) + 1
352
+ if seq_len > self.max_seq_len_cached: # growth
353
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
354
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
355
+ self.max_seq_len_cached = seq_len
356
+
357
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
358
+ # This .to() is needed if the model has been moved to a device after being initialized (because
359
+ # the buffer is automatically moved, but not the original copy)
360
+ self.original_inv_freq = self.original_inv_freq.to(device)
361
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
362
+ self.max_seq_len_cached = self.original_max_seq_len
363
+
364
+ @torch.no_grad()
365
+ def forward(self, x, position_ids):
366
+ if "dynamic" in self.rope_type:
367
+ self._dynamic_frequency_update(position_ids, device=x.device)
368
+
369
+ # Core RoPE block
370
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
371
+ position_ids_expanded = position_ids[:, None, :].float()
372
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
373
+ device_type = x.device.type
374
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
375
+ with torch.autocast(device_type=device_type, enabled=False):
376
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
377
+ emb = torch.cat((freqs, freqs), dim=-1)
378
+ cos = emb.cos()
379
+ sin = emb.sin()
380
+
381
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
382
+ cos = cos * self.attention_scaling
383
+ sin = sin * self.attention_scaling
384
+
385
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
386
+
387
+
388
+ QWEN2_START_DOCSTRING = r"""
389
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
390
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
391
+ etc.)
392
+
393
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
394
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
395
+ and behavior.
396
+
397
+ Parameters:
398
+ config ([`Qwen2Config`]):
399
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
400
+ load the weights associated with the model, only the configuration. Check out the
401
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
402
+ """
403
+
404
+
405
+ @add_start_docstrings(
406
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
407
+ QWEN2_START_DOCSTRING,
408
+ )
409
+ class Qwen2PreTrainedModel(PreTrainedModel):
410
+ config_class = Qwen2Config
411
+ base_model_prefix = "model"
412
+ supports_gradient_checkpointing = True
413
+ _no_split_modules = ["Qwen2DecoderLayer"]
414
+ _skip_keys_device_placement = ["past_key_values"]
415
+ _supports_flash_attn_2 = True
416
+ _supports_sdpa = True
417
+ _supports_flex_attn = True
418
+ _supports_cache_class = True
419
+ _supports_quantized_cache = True
420
+ _supports_static_cache = True
421
+
422
+ def _init_weights(self, module):
423
+ std = self.config.initializer_range
424
+ if isinstance(module, nn.Linear):
425
+ module.weight.data.normal_(mean=0.0, std=std)
426
+ if module.bias is not None:
427
+ module.bias.data.zero_()
428
+ elif isinstance(module, nn.Embedding):
429
+ module.weight.data.normal_(mean=0.0, std=std)
430
+ if module.padding_idx is not None:
431
+ module.weight.data[module.padding_idx].zero_()
432
+
433
+
434
+ QWEN2_INPUTS_DOCSTRING = r"""
435
+ Args:
436
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
437
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
438
+ it.
439
+
440
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
441
+ [`PreTrainedTokenizer.__call__`] for details.
442
+
443
+ [What are input IDs?](../glossary#input-ids)
444
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
445
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
446
+
447
+ - 1 for tokens that are **not masked**,
448
+ - 0 for tokens that are **masked**.
449
+
450
+ [What are attention masks?](../glossary#attention-mask)
451
+
452
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
453
+ [`PreTrainedTokenizer.__call__`] for details.
454
+
455
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
456
+ `past_key_values`).
457
+
458
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
459
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
460
+ information on the default strategy.
461
+
462
+ - 1 indicates the head is **not masked**,
463
+ - 0 indicates the head is **masked**.
464
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
465
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
466
+ config.n_positions - 1]`.
467
+
468
+ [What are position IDs?](../glossary#position-ids)
469
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
470
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
471
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
472
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
473
+
474
+ Two formats are allowed:
475
+ - a [`~cache_utils.Cache`] instance, see our
476
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
477
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
478
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
479
+ cache format.
480
+
481
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
482
+ legacy cache format will be returned.
483
+
484
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
485
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
486
+ of shape `(batch_size, sequence_length)`.
487
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
488
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
489
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
490
+ model's internal embedding lookup matrix.
491
+ use_cache (`bool`, *optional*):
492
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
493
+ `past_key_values`).
494
+ output_attentions (`bool`, *optional*):
495
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
496
+ tensors for more detail.
497
+ output_hidden_states (`bool`, *optional*):
498
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
499
+ more detail.
500
+ return_dict (`bool`, *optional*):
501
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
502
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
503
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
504
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
505
+ the complete sequence length.
506
+ """
507
+
508
+
509
+ @add_start_docstrings(
510
+ "The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
511
+ QWEN2_START_DOCSTRING,
512
+ )
513
+ class Qwen2Model(Qwen2PreTrainedModel):
514
+ """
515
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
516
+
517
+ Args:
518
+ config: Qwen2Config
519
+ """
520
+
521
+ def __init__(self, config: Qwen2Config):
522
+ super().__init__(config)
523
+ self.padding_idx = config.pad_token_id
524
+ self.vocab_size = config.vocab_size
525
+
526
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
527
+ self.layers = nn.ModuleList(
528
+ [Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
529
+ )
530
+ self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
531
+ self.rotary_emb = Qwen2RotaryEmbedding(config=config)
532
+ self.gradient_checkpointing = False
533
+
534
+ # Initialize weights and apply final processing
535
+ self.post_init()
536
+
537
+ def get_input_embeddings(self):
538
+ return self.embed_tokens
539
+
540
+ def set_input_embeddings(self, value):
541
+ self.embed_tokens = value
542
+
543
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
544
+ def forward(
545
+ self,
546
+ input_ids: torch.LongTensor = None,
547
+ attention_mask: Optional[torch.Tensor] = None,
548
+ position_ids: Optional[torch.LongTensor] = None,
549
+ past_key_values: Optional[Cache] = None,
550
+ inputs_embeds: Optional[torch.FloatTensor] = None,
551
+ use_cache: Optional[bool] = None,
552
+ output_attentions: Optional[bool] = None,
553
+ output_hidden_states: Optional[bool] = None,
554
+ return_dict: Optional[bool] = None,
555
+ cache_position: Optional[torch.LongTensor] = None,
556
+ layer_idxs = None,
557
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
558
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
559
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
560
+ output_hidden_states = (
561
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
562
+ )
563
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
564
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
565
+
566
+ if (input_ids is None) ^ (inputs_embeds is not None):
567
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
568
+
569
+ if self.gradient_checkpointing and self.training and use_cache:
570
+ logger.warning_once(
571
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
572
+ )
573
+ use_cache = False
574
+
575
+ if inputs_embeds is None:
576
+ inputs_embeds = self.embed_tokens(input_ids)
577
+
578
+ if use_cache and past_key_values is None:
579
+ past_key_values = DynamicCache()
580
+
581
+ if cache_position is None:
582
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
583
+ cache_position = torch.arange(
584
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
585
+ )
586
+
587
+ if position_ids is None:
588
+ position_ids = cache_position.unsqueeze(0)
589
+
590
+ causal_mask = self._update_causal_mask(
591
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
592
+ )
593
+
594
+ hidden_states = inputs_embeds
595
+
596
+ # create position embeddings to be shared across the decoder layers
597
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
598
+
599
+ # decoder layers
600
+ all_hidden_states = () if output_hidden_states else None
601
+ all_self_attns = () if output_attentions else None
602
+
603
+ if layer_idxs is None:
604
+ layer_idxs = list(range(self.config.num_hidden_layers))
605
+ layers = [self.layers[layer_idx] for layer_idx in layer_idxs]
606
+
607
+ for decoder_layer in layers:
608
+ if output_hidden_states:
609
+ all_hidden_states += (hidden_states,)
610
+
611
+ if self.gradient_checkpointing and self.training:
612
+ layer_outputs = self._gradient_checkpointing_func(
613
+ decoder_layer.__call__,
614
+ hidden_states,
615
+ causal_mask,
616
+ position_ids,
617
+ past_key_values,
618
+ output_attentions,
619
+ use_cache,
620
+ cache_position,
621
+ position_embeddings,
622
+ **flash_attn_kwargs,
623
+ )
624
+ else:
625
+ layer_outputs = decoder_layer(
626
+ hidden_states,
627
+ attention_mask=causal_mask,
628
+ position_ids=position_ids,
629
+ past_key_value=past_key_values,
630
+ output_attentions=output_attentions,
631
+ use_cache=use_cache,
632
+ cache_position=cache_position,
633
+ position_embeddings=position_embeddings,
634
+ **flash_attn_kwargs,
635
+ )
636
+
637
+ hidden_states = layer_outputs[0]
638
+
639
+ if output_attentions:
640
+ all_self_attns += (layer_outputs[1],)
641
+
642
+ hidden_states = self.norm(hidden_states)
643
+
644
+ # add hidden states from the last decoder layer
645
+ if output_hidden_states:
646
+ all_hidden_states += (hidden_states,)
647
+
648
+ output = BaseModelOutputWithPast(
649
+ last_hidden_state=hidden_states,
650
+ past_key_values=past_key_values if use_cache else None,
651
+ hidden_states=all_hidden_states,
652
+ attentions=all_self_attns,
653
+ )
654
+ return output if return_dict else output.to_tuple()
655
+
656
+ def _update_causal_mask(
657
+ self,
658
+ attention_mask: torch.Tensor,
659
+ input_tensor: torch.Tensor,
660
+ cache_position: torch.Tensor,
661
+ past_key_values: Cache,
662
+ output_attentions: bool,
663
+ ):
664
+ if self.config._attn_implementation == "flash_attention_2":
665
+ if attention_mask is not None and (attention_mask == 0.0).any():
666
+ return attention_mask
667
+ return None
668
+
669
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
670
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
671
+ # to infer the attention mask.
672
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
673
+ using_static_cache = isinstance(past_key_values, StaticCache)
674
+
675
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
676
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
677
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
678
+ attention_mask,
679
+ inputs_embeds=input_tensor,
680
+ past_key_values_length=past_seen_tokens,
681
+ is_training=self.training,
682
+ ):
683
+ return None
684
+
685
+ dtype, device = input_tensor.dtype, input_tensor.device
686
+ sequence_length = input_tensor.shape[1]
687
+ if using_static_cache:
688
+ target_length = past_key_values.get_max_cache_shape()
689
+ else:
690
+ target_length = (
691
+ attention_mask.shape[-1]
692
+ if isinstance(attention_mask, torch.Tensor)
693
+ else past_seen_tokens + sequence_length + 1
694
+ )
695
+
696
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
697
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
698
+ attention_mask,
699
+ sequence_length=sequence_length,
700
+ target_length=target_length,
701
+ dtype=dtype,
702
+ device=device,
703
+ cache_position=cache_position,
704
+ batch_size=input_tensor.shape[0],
705
+ )
706
+
707
+ if (
708
+ self.config._attn_implementation == "sdpa"
709
+ and attention_mask is not None
710
+ and attention_mask.device.type == "cuda"
711
+ and not output_attentions
712
+ ):
713
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
714
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
715
+ # Details: https://github.com/pytorch/pytorch/issues/110213
716
+ min_dtype = torch.finfo(dtype).min
717
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
718
+
719
+ return causal_mask
720
+
721
+ @staticmethod
722
+ def _prepare_4d_causal_attention_mask_with_cache_position(
723
+ attention_mask: torch.Tensor,
724
+ sequence_length: int,
725
+ target_length: int,
726
+ dtype: torch.dtype,
727
+ device: torch.device,
728
+ cache_position: torch.Tensor,
729
+ batch_size: int,
730
+ **kwargs,
731
+ ):
732
+ """
733
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
734
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
735
+
736
+ Args:
737
+ attention_mask (`torch.Tensor`):
738
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
739
+ `(batch_size, 1, query_length, key_value_length)`.
740
+ sequence_length (`int`):
741
+ The sequence length being processed.
742
+ target_length (`int`):
743
+ The target length: when generating with static cache, the mask should be as long as the static cache,
744
+ to account for the 0 padding, the part of the cache that is not filled yet.
745
+ dtype (`torch.dtype`):
746
+ The dtype to use for the 4D attention mask.
747
+ device (`torch.device`):
748
+ The device to plcae the 4D attention mask on.
749
+ cache_position (`torch.Tensor`):
750
+ Indices depicting the position of the input sequence tokens in the sequence.
751
+ batch_size (`torch.Tensor`):
752
+ Batch size.
753
+ """
754
+ if attention_mask is not None and attention_mask.dim() == 4:
755
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
756
+ causal_mask = attention_mask
757
+ else:
758
+ min_dtype = torch.finfo(dtype).min
759
+ causal_mask = torch.full(
760
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
761
+ )
762
+ if sequence_length != 1:
763
+ causal_mask = torch.triu(causal_mask, diagonal=1)
764
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
765
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
766
+ if attention_mask is not None:
767
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
768
+ mask_length = attention_mask.shape[-1]
769
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
770
+ padding_mask = padding_mask == 0
771
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
772
+ padding_mask, min_dtype
773
+ )
774
+
775
+ return causal_mask
776
+
777
+
778
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
779
+
780
+
781
+ class Qwen2MTPForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
782
+ _tied_weights_keys = ["lm_head.weight"]
783
+ _tp_plan = {"lm_head": "colwise_rep"}
784
+
785
+ def __init__(self, config):
786
+ super().__init__(config)
787
+ self.model = Qwen2Model(config)
788
+ self.vocab_size = config.vocab_size
789
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
790
+
791
+ self.mtp_projs = nn.ModuleList(
792
+ [nn.Linear(2 * config.hidden_size, config.hidden_size, bias=False) for _ in range(self.config.num_nextn_predict_layers)]
793
+ )
794
+
795
+ self.mtp_embed_norms = nn.ModuleList([Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) for _ in range(self.config.num_nextn_predict_layers)])
796
+ self.mtp_hidden_norms = nn.ModuleList([Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) for _ in range(self.config.num_nextn_predict_layers)])
797
+
798
+ # Initialize weights and apply final processing
799
+ self.post_init()
800
+
801
+ def get_input_embeddings(self):
802
+ return self.model.embed_tokens
803
+
804
+ def set_input_embeddings(self, value):
805
+ self.model.embed_tokens = value
806
+
807
+ def get_output_embeddings(self):
808
+ return self.lm_head
809
+
810
+ def set_output_embeddings(self, new_embeddings):
811
+ self.lm_head = new_embeddings
812
+
813
+ def set_decoder(self, decoder):
814
+ self.model = decoder
815
+
816
+ def get_decoder(self):
817
+ return self.model
818
+
819
+ def mtp_forward(
820
+ self,
821
+ mtp_idx,
822
+ input_ids: torch.LongTensor = None,
823
+ hidden_states: torch.Tensor = None,
824
+ attention_mask: Optional[torch.Tensor] = None,
825
+ position_ids: Optional[torch.LongTensor] = None,
826
+ past_key_values: Optional[Cache] = None,
827
+ inputs_embeds: Optional[torch.FloatTensor] = None,
828
+ labels: Optional[torch.LongTensor] = None,
829
+ kl_labels: Optional[torch.Tensor] = None,
830
+ use_cache: Optional[bool] = None,
831
+ output_attentions: Optional[bool] = None,
832
+ output_hidden_states: Optional[bool] = None,
833
+ return_dict: Optional[bool] = None,
834
+ cache_position: Optional[torch.LongTensor] = None,
835
+ num_logits_to_keep: int = 0,
836
+ **kwargs: Unpack[KwargsForCausalLM],
837
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
838
+
839
+ if (input_ids is None) ^ (inputs_embeds is not None):
840
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
841
+
842
+ if inputs_embeds is None:
843
+ inputs_embeds = self.model.embed_tokens(input_ids)
844
+ # inputs_embeds = inputs_embeds.to(hidden_states.device)
845
+
846
+ inputs_embeds = torch.cat(
847
+ (
848
+ self.mtp_embed_norms[mtp_idx](inputs_embeds),
849
+ self.mtp_hidden_norms[mtp_idx](hidden_states),
850
+ ),
851
+ dim=-1,
852
+ )
853
+
854
+ inputs_embeds = self.mtp_projs[mtp_idx](inputs_embeds)
855
+
856
+ outputs = self.model(
857
+ input_ids=None,
858
+ attention_mask=attention_mask,
859
+ position_ids=position_ids,
860
+ past_key_values=past_key_values,
861
+ inputs_embeds=inputs_embeds,
862
+ use_cache=use_cache,
863
+ output_attentions=output_attentions,
864
+ output_hidden_states=output_hidden_states,
865
+ return_dict=return_dict,
866
+ cache_position=cache_position,
867
+ layer_idxs=[self.config.num_hidden_layers - self.config.num_nextn_predict_layers + mtp_idx],
868
+ **kwargs,
869
+ )
870
+
871
+ hidden_states = outputs[0]
872
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
873
+
874
+ if labels is not None:
875
+ loss = []
876
+ # ce_loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
877
+ ce_loss = ForCausalLMLoss(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
878
+
879
+ loss += [ce_loss]
880
+
881
+ if False:
882
+ kl_logits = logits.contiguous()
883
+ kl_labels = kl_labels.contiguous()
884
+ kl_loss = compute_kl_loss(kl_logits, kl_labels)
885
+
886
+ kl_loss_weight = 1
887
+ loss += [kl_loss_weight * kl_loss]
888
+
889
+ if self.training and torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
890
+ with torch.no_grad():
891
+ logger.info(f"\tMTP {mtp_idx=} {loss=}")
892
+ else:
893
+ loss = None
894
+
895
+ return outputs, logits, loss
896
+
897
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
898
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
899
+ def forward(
900
+ self,
901
+ input_ids: torch.LongTensor = None,
902
+ attention_mask: Optional[torch.Tensor] = None,
903
+ position_ids: Optional[torch.LongTensor] = None,
904
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
905
+ inputs_embeds: Optional[torch.FloatTensor] = None,
906
+ labels: Optional[torch.LongTensor] = None,
907
+ use_cache: Optional[bool] = None,
908
+ output_attentions: Optional[bool] = None,
909
+ output_hidden_states: Optional[bool] = None,
910
+ return_dict: Optional[bool] = None,
911
+ cache_position: Optional[torch.LongTensor] = None,
912
+ num_logits_to_keep: int = 0,
913
+ **kwargs: Unpack[KwargsForCausalLM],
914
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
915
+ r"""
916
+ Args:
917
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
918
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
919
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
920
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
921
+
922
+ num_logits_to_keep (`int`, *optional*):
923
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
924
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
925
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
926
+
927
+ Returns:
928
+
929
+ Example:
930
+
931
+ ```python
932
+ >>> from transformers import AutoTokenizer, Qwen2ForCausalLM
933
+
934
+ >>> model = Qwen2ForCausalLM.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
935
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-qwen2/Qwen2-2-7b-hf")
936
+
937
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
938
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
939
+
940
+ >>> # Generate
941
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
942
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
943
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
944
+ ```"""
945
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
946
+ output_hidden_states = (
947
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
948
+ )
949
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
950
+
951
+ # ===============================================================================================
952
+ if not self.training:
953
+ if input_ids is not None:
954
+ num_input_tokens = input_ids.size(1)
955
+ if inputs_embeds is not None:
956
+ num_input_tokens = inputs_embeds.size(1)
957
+
958
+ if use_cache:
959
+ if self.input_ids is None and self.inputs_embeds is None:
960
+ if input_ids is not None:
961
+ self.input_ids = input_ids
962
+ if inputs_embeds is not None:
963
+ self.inputs_embeds = inputs_embeds
964
+ if position_ids is not None:
965
+ self.position_ids = position_ids
966
+
967
+ else:
968
+ if input_ids is not None:
969
+ self.input_ids = torch.cat([self.input_ids, input_ids], dim=1)
970
+ if inputs_embeds is not None:
971
+ self.inputs_embeds = torch.cat([self.inputs_embeds, inputs_embeds], dim=1)
972
+ if position_ids is not None:
973
+ self.position_ids = torch.cat([self.position_ids, position_ids], dim=1)
974
+
975
+ else:
976
+ self.input_ids = input_ids
977
+ self.inputs_embeds = inputs_embeds
978
+ self.position_ids = position_ids
979
+
980
+ self.attention_mask = attention_mask
981
+
982
+ if self.num_prefill_tokens < 0:
983
+ self.num_prefill_tokens = self.input_ids.size(1)
984
+ num_decode_tokens = self.input_ids.size(1) - self.num_prefill_tokens
985
+
986
+ if self.mtp_inference_mode[num_decode_tokens] == "M":
987
+ self.mtp_idx = -1
988
+ elif self.mtp_inference_mode[num_decode_tokens] == "m":
989
+ if self.mtp_inference_mode[num_decode_tokens - 1] == "M":
990
+ self.mtp_idx = 0
991
+ else:
992
+ pass
993
+
994
+ # if True:
995
+ if False:
996
+ print("=" * 100)
997
+ print(f"{self.mtp_idx=}")
998
+ print(f"{self.num_prefill_tokens=}")
999
+ print(f"{num_decode_tokens=}")
1000
+ print(f"{self.mtp_inference_mode=}")
1001
+ if self.input_ids is not None:
1002
+ print(f"{self.input_ids.size()=}")
1003
+ if self.inputs_embeds is not None:
1004
+ print(f"{self.inputs_embeds.size()=}")
1005
+ if self.hidden_states[self.mtp_idx] is not None:
1006
+ print(f"{self.hidden_states[self.mtp_idx].size()=}")
1007
+
1008
+
1009
+ if self.mtp_idx > -1 and self.mtp_idx < self.config.num_nextn_predict_layers and num_input_tokens == 1:
1010
+ layer_idx = self.config.num_hidden_layers - self.config.num_nextn_predict_layers + self.mtp_idx
1011
+
1012
+ if use_cache:
1013
+ if len(past_key_values.key_cache) > layer_idx:
1014
+ num_seen_tokens = past_key_values.key_cache[layer_idx].size(2)
1015
+ else:
1016
+ num_seen_tokens = 0
1017
+ else:
1018
+ num_seen_tokens = 0
1019
+
1020
+ hidden_states = self.hidden_states[self.mtp_idx][:, num_seen_tokens:, :]
1021
+
1022
+ if self.input_ids is not None:
1023
+ input_ids = self.input_ids[:, num_seen_tokens + self.mtp_idx + 1:]
1024
+ if self.inputs_embeds is not None:
1025
+ inputs_embeds = self.inputs_embeds[:, num_seen_tokens + self.mtp_idx + 1:, :]
1026
+ if self.position_ids is not None:
1027
+ position_ids = self.position_ids[:, num_seen_tokens + self.mtp_idx + 1:]
1028
+ attention_mask = self.attention_mask[:, num_seen_tokens + self.mtp_idx + 1:]
1029
+
1030
+ if False:
1031
+ # if True:
1032
+ print("=" * 100)
1033
+ print(f"{self.mtp_idx=}")
1034
+ print(f"{layer_idx=}")
1035
+ if input_ids is not None:
1036
+ print(f"{input_ids.size()=} {input_ids=}")
1037
+ if inputs_embeds is not None:
1038
+ print(f"{inputs_embeds.size()=} {inputs_embeds=}")
1039
+ print(f"{hidden_states.size()=} {hidden_states=}")
1040
+ if attention_mask is not None:
1041
+ print(f"{attention_mask.size()=} {attention_mask=}")
1042
+ if position_ids is not None:
1043
+ print(f"{position_ids.size()=} {position_ids=}")
1044
+ if use_cache and len(past_key_values.key_cache) > layer_idx:
1045
+ print(f"{past_key_values.key_cache[layer_idx].size()=}")
1046
+ print(f"{use_cache=}")
1047
+ print(f"{num_logits_to_keep=}")
1048
+ print(f"{output_attentions=}")
1049
+ print(f"{output_hidden_states=}")
1050
+ print(f"{cache_position=}")
1051
+
1052
+ mtp_outputs, logits, _ = self.mtp_forward(
1053
+ self.mtp_idx,
1054
+ input_ids=input_ids,
1055
+ hidden_states=hidden_states,
1056
+ attention_mask=attention_mask,
1057
+ position_ids=position_ids,
1058
+ past_key_values=past_key_values,
1059
+ inputs_embeds=inputs_embeds,
1060
+ labels=None,
1061
+ kl_labels=None,
1062
+ use_cache=use_cache,
1063
+ output_attentions=output_attentions,
1064
+ output_hidden_states=output_hidden_states,
1065
+ return_dict=return_dict,
1066
+ cache_position=cache_position,
1067
+ num_logits_to_keep=num_logits_to_keep,
1068
+ **kwargs,
1069
+ )
1070
+ hidden_states = mtp_outputs.last_hidden_state
1071
+
1072
+ self.mtp_idx += 1
1073
+ if use_cache:
1074
+ if self.hidden_states[self.mtp_idx] is None:
1075
+ self.hidden_states[self.mtp_idx] = hidden_states
1076
+ else:
1077
+ self.hidden_states[self.mtp_idx] = torch.cat([self.hidden_states[self.mtp_idx], hidden_states], dim=1)
1078
+
1079
+ else:
1080
+ self.hidden_states[self.mtp_idx] = hidden_states
1081
+
1082
+ return CausalLMOutputWithPast(
1083
+ loss=None,
1084
+ logits=logits,
1085
+ past_key_values=past_key_values,
1086
+ hidden_states=mtp_outputs.hidden_states,
1087
+ attentions=mtp_outputs.attentions,
1088
+ )
1089
+
1090
+ if use_cache and past_key_values is not None:
1091
+ if len(past_key_values.key_cache) > 0:
1092
+ # print(f"{past_key_values.key_cache[0].size()=}")
1093
+ num_seen_tokens = past_key_values.key_cache[0].size(2)
1094
+ else:
1095
+ num_seen_tokens = 0
1096
+ else:
1097
+ num_seen_tokens = 0
1098
+
1099
+ if self.input_ids is not None:
1100
+ input_ids = self.input_ids[:, num_seen_tokens:]
1101
+ if self.inputs_embeds is not None:
1102
+ inputs_embeds = self.inputs_embeds[:, num_seen_tokens:, :]
1103
+ if self.position_ids is not None:
1104
+ position_ids = self.position_ids[:, num_seen_tokens:]
1105
+ attention_mask = attention_mask
1106
+
1107
+ # ===============================================================================================
1108
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1109
+ outputs = self.model(
1110
+ input_ids=input_ids,
1111
+ attention_mask=attention_mask,
1112
+ position_ids=position_ids,
1113
+ past_key_values=past_key_values,
1114
+ inputs_embeds=inputs_embeds,
1115
+ use_cache=use_cache,
1116
+ output_attentions=output_attentions,
1117
+ output_hidden_states=output_hidden_states,
1118
+ return_dict=return_dict,
1119
+ cache_position=cache_position,
1120
+ layer_idxs=list(range(self.config.num_hidden_layers - self.config.num_nextn_predict_layers)),
1121
+ **kwargs,
1122
+ )
1123
+
1124
+ hidden_states = outputs[0]
1125
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1126
+ logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
1127
+
1128
+ loss = None
1129
+ if labels is not None:
1130
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
1131
+ # loss = ForCausalLMLoss(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
1132
+ if self.training and torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
1133
+ with torch.no_grad():
1134
+ logger.info(f"STP {loss=}")
1135
+
1136
+ # ===============================================================================================
1137
+ if labels is not None and self.config.num_nextn_predict_layers > 0:
1138
+
1139
+ if self.lm_head.weight.requires_grad:
1140
+ if inputs_embeds is None:
1141
+ inputs_embeds = self.model.embed_tokens(input_ids)
1142
+
1143
+ inputs_embeds = inputs_embeds
1144
+ hidden_states = hidden_states
1145
+ kl_labels = logits
1146
+
1147
+ else:
1148
+ with torch.no_grad():
1149
+ if inputs_embeds is None:
1150
+ inputs_embeds = self.model.embed_tokens(input_ids)
1151
+
1152
+ inputs_embeds = inputs_embeds.detach()
1153
+ hidden_states = hidden_states.detach()
1154
+ kl_labels = logits.detach()
1155
+
1156
+ if self.lm_head.weight.requires_grad:
1157
+ pass
1158
+ else:
1159
+ loss = 0.0
1160
+
1161
+ for mtp_idx in range(self.config.num_nextn_predict_layers):
1162
+
1163
+ # SFT with data packing
1164
+ if True:
1165
+ mtp_mask = position_ids > mtp_idx
1166
+ # input_ids = input_ids[mtp_mask].unsqueeze(0)
1167
+ inputs_embeds = inputs_embeds[mtp_mask].unsqueeze(0)
1168
+ if attention_mask is not None:
1169
+ attention_mask = attention_mask[mtp_mask].unsqueeze(0)
1170
+ if position_ids is not None:
1171
+ position_ids = position_ids[mtp_mask].unsqueeze(0)
1172
+ labels = labels[mtp_mask].unsqueeze(0)
1173
+ kl_labels = kl_labels[mtp_mask].unsqueeze(0)
1174
+
1175
+ mtp_mask = torch.cat((mtp_mask[:, 1:], mtp_mask[:, :1]), dim=1)
1176
+ hidden_states = hidden_states[mtp_mask].unsqueeze(0)
1177
+
1178
+ cu_seq_lens_q, cu_seq_lens_k, max_length_q, max_length_k = prepare_fa2_from_position_ids_for_mtp(position_ids, mtp_idx)
1179
+ # kwargs["cu_seq_lens_q"] = cu_seq_lens_q
1180
+ # kwargs["cu_seq_lens_k"] = cu_seq_lens_k
1181
+ # kwargs["max_length_q"] = max_length_q
1182
+ # kwargs["max_length_k"] = max_length_k
1183
+
1184
+ # print(f"{cu_seq_lens_q}")
1185
+ # print(f"{cu_seq_lens_k}")
1186
+ # print(f"{max_length_q}")
1187
+ # print(f"{max_length_k}")
1188
+
1189
+ mtp_outputs, _, mtp_loss = self.mtp_forward(
1190
+ mtp_idx,
1191
+ input_ids=None,
1192
+ hidden_states=hidden_states,
1193
+ attention_mask=attention_mask,
1194
+ position_ids=position_ids,
1195
+ past_key_values=past_key_values,
1196
+ inputs_embeds=inputs_embeds,
1197
+ labels=labels,
1198
+ kl_labels=kl_labels,
1199
+ use_cache=use_cache,
1200
+ output_attentions=output_attentions,
1201
+ output_hidden_states=output_hidden_states,
1202
+ return_dict=return_dict,
1203
+ cache_position=cache_position,
1204
+ num_logits_to_keep=num_logits_to_keep,
1205
+ cu_seq_lens_q=cu_seq_lens_q,
1206
+ cu_seq_lens_k=cu_seq_lens_k,
1207
+ max_length_q=max_length_q,
1208
+ max_length_k=max_length_k,
1209
+ **kwargs,
1210
+ )
1211
+
1212
+ loss += sum(mtp_loss) / self.config.num_nextn_predict_layers * self.config.mtp_loss_weight
1213
+
1214
+ hidden_states = mtp_outputs.last_hidden_state
1215
+
1216
+ if not self.training:
1217
+ self.mtp_idx = 0
1218
+
1219
+ if use_cache:
1220
+ if self.hidden_states[self.mtp_idx] is None:
1221
+ self.hidden_states[self.mtp_idx] = hidden_states
1222
+
1223
+ else:
1224
+ self.hidden_states[self.mtp_idx] = torch.cat([self.hidden_states[self.mtp_idx], hidden_states], dim=1)
1225
+
1226
+ else:
1227
+ self.hidden_states[self.mtp_idx] = hidden_states
1228
+
1229
+ # ===============================================================================================
1230
+
1231
+ if not return_dict:
1232
+ output = (logits,) + outputs[1:]
1233
+ return (loss,) + output if loss is not None else output
1234
+
1235
+ return CausalLMOutputWithPast(
1236
+ loss=loss,
1237
+ logits=logits,
1238
+ past_key_values=outputs.past_key_values,
1239
+ hidden_states=outputs.hidden_states,
1240
+ attentions=outputs.attentions,
1241
+ )
1242
+
1243
+ def _prepare_mtp_for_generation(
1244
+ self,
1245
+ mtp_inference_mode,
1246
+ max_new_tokens,
1247
+ ):
1248
+
1249
+ self.input_ids = None
1250
+ self.inputs_embeds = None
1251
+ self.hidden_states = [None] * (self.config.num_nextn_predict_layers + 1)
1252
+ self.position_ids = None
1253
+ self.attention_mask = None
1254
+
1255
+ self.mtp_idx = -1
1256
+ self.num_prefill_tokens = -1
1257
+
1258
+ assert isinstance(mtp_inference_mode, list)
1259
+ assert len(mtp_inference_mode) >= 2
1260
+ assert len(mtp_inference_mode) % 2 == 0
1261
+
1262
+ main_nums = mtp_inference_mode[::2]
1263
+ mtp_nums = mtp_inference_mode[1::2]
1264
+
1265
+ mtp_inference_mode = []
1266
+ while len(mtp_inference_mode) < max_new_tokens:
1267
+
1268
+ if len(mtp_nums) > 1:
1269
+ mtp_num = mtp_nums.pop(0)
1270
+ else:
1271
+ mtp_num = mtp_nums[0]
1272
+
1273
+ if len(main_nums) > 1:
1274
+ main_num = main_nums.pop(0)
1275
+ else:
1276
+ main_num = main_nums[0]
1277
+
1278
+ mtp_inference_mode += "M" * main_num + "m" * mtp_num
1279
+
1280
+ self.mtp_inference_mode = mtp_inference_mode
1281
+
1282
+ def _prepare_cache_for_generation(self, *args, **kwargs):
1283
+
1284
+ generation_config = args[0]
1285
+ mtp_inference_mode = getattr(generation_config, "mtp_inference_mode", [1, self.config.num_nextn_predict_layers])
1286
+ max_new_tokens = generation_config.max_new_tokens
1287
+
1288
+ self._prepare_mtp_for_generation(mtp_inference_mode, max_new_tokens)
1289
+
1290
+ return super()._prepare_cache_for_generation(*args, **kwargs)
1291
+
1292
+
1293
+ @add_start_docstrings(
1294
+ """
1295
+ The Qwen2 Model transformer with a sequence classification head on top (linear layer).
1296
+
1297
+ [`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1298
+ (e.g. GPT-2) do.
1299
+
1300
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1301
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1302
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1303
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1304
+ each row of the batch).
1305
+ """,
1306
+ QWEN2_START_DOCSTRING,
1307
+ )
1308
+ class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
1309
+ def __init__(self, config):
1310
+ super().__init__(config)
1311
+ self.num_labels = config.num_labels
1312
+ self.model = Qwen2Model(config)
1313
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1314
+
1315
+ # Initialize weights and apply final processing
1316
+ self.post_init()
1317
+
1318
+ def get_input_embeddings(self):
1319
+ return self.model.embed_tokens
1320
+
1321
+ def set_input_embeddings(self, value):
1322
+ self.model.embed_tokens = value
1323
+
1324
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1325
+ def forward(
1326
+ self,
1327
+ input_ids: Optional[torch.LongTensor] = None,
1328
+ attention_mask: Optional[torch.Tensor] = None,
1329
+ position_ids: Optional[torch.LongTensor] = None,
1330
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1331
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1332
+ labels: Optional[torch.LongTensor] = None,
1333
+ use_cache: Optional[bool] = None,
1334
+ output_attentions: Optional[bool] = None,
1335
+ output_hidden_states: Optional[bool] = None,
1336
+ return_dict: Optional[bool] = None,
1337
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1338
+ r"""
1339
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1340
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1341
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1342
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1343
+ """
1344
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1345
+
1346
+ transformer_outputs = self.model(
1347
+ input_ids,
1348
+ attention_mask=attention_mask,
1349
+ position_ids=position_ids,
1350
+ past_key_values=past_key_values,
1351
+ inputs_embeds=inputs_embeds,
1352
+ use_cache=use_cache,
1353
+ output_attentions=output_attentions,
1354
+ output_hidden_states=output_hidden_states,
1355
+ return_dict=return_dict,
1356
+ )
1357
+ hidden_states = transformer_outputs[0]
1358
+ logits = self.score(hidden_states)
1359
+
1360
+ if input_ids is not None:
1361
+ batch_size = input_ids.shape[0]
1362
+ else:
1363
+ batch_size = inputs_embeds.shape[0]
1364
+
1365
+ if self.config.pad_token_id is None and batch_size != 1:
1366
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1367
+ if self.config.pad_token_id is None:
1368
+ sequence_lengths = -1
1369
+ else:
1370
+ if input_ids is not None:
1371
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1372
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1373
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1374
+ sequence_lengths = sequence_lengths.to(logits.device)
1375
+ else:
1376
+ sequence_lengths = -1
1377
+
1378
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1379
+
1380
+ loss = None
1381
+ if labels is not None:
1382
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
1383
+
1384
+ if not return_dict:
1385
+ output = (pooled_logits,) + transformer_outputs[1:]
1386
+ return ((loss,) + output) if loss is not None else output
1387
+
1388
+ return SequenceClassifierOutputWithPast(
1389
+ loss=loss,
1390
+ logits=pooled_logits,
1391
+ past_key_values=transformer_outputs.past_key_values,
1392
+ hidden_states=transformer_outputs.hidden_states,
1393
+ attentions=transformer_outputs.attentions,
1394
+ )
1395
+
1396
+
1397
+ @add_start_docstrings(
1398
+ """
1399
+ The Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1400
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1401
+ """,
1402
+ QWEN2_START_DOCSTRING,
1403
+ )
1404
+ class Qwen2ForTokenClassification(Qwen2PreTrainedModel):
1405
+ def __init__(self, config):
1406
+ super().__init__(config)
1407
+ self.num_labels = config.num_labels
1408
+ self.model = Qwen2Model(config)
1409
+ if getattr(config, "classifier_dropout", None) is not None:
1410
+ classifier_dropout = config.classifier_dropout
1411
+ elif getattr(config, "hidden_dropout", None) is not None:
1412
+ classifier_dropout = config.hidden_dropout
1413
+ else:
1414
+ classifier_dropout = 0.1
1415
+ self.dropout = nn.Dropout(classifier_dropout)
1416
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1417
+
1418
+ # Initialize weights and apply final processing
1419
+ self.post_init()
1420
+
1421
+ def get_input_embeddings(self):
1422
+ return self.model.embed_tokens
1423
+
1424
+ def set_input_embeddings(self, value):
1425
+ self.model.embed_tokens = value
1426
+
1427
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1428
+ @add_code_sample_docstrings(
1429
+ checkpoint=_CHECKPOINT_FOR_DOC,
1430
+ output_type=TokenClassifierOutput,
1431
+ config_class=_CONFIG_FOR_DOC,
1432
+ )
1433
+ def forward(
1434
+ self,
1435
+ input_ids: Optional[torch.LongTensor] = None,
1436
+ attention_mask: Optional[torch.Tensor] = None,
1437
+ position_ids: Optional[torch.LongTensor] = None,
1438
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1439
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1440
+ labels: Optional[torch.LongTensor] = None,
1441
+ use_cache: Optional[bool] = None,
1442
+ output_attentions: Optional[bool] = None,
1443
+ output_hidden_states: Optional[bool] = None,
1444
+ return_dict: Optional[bool] = None,
1445
+ ) -> Union[Tuple, TokenClassifierOutput]:
1446
+ r"""
1447
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1448
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1449
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1450
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1451
+ """
1452
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1453
+
1454
+ outputs = self.model(
1455
+ input_ids,
1456
+ attention_mask=attention_mask,
1457
+ position_ids=position_ids,
1458
+ past_key_values=past_key_values,
1459
+ inputs_embeds=inputs_embeds,
1460
+ use_cache=use_cache,
1461
+ output_attentions=output_attentions,
1462
+ output_hidden_states=output_hidden_states,
1463
+ return_dict=return_dict,
1464
+ )
1465
+ sequence_output = outputs[0]
1466
+ sequence_output = self.dropout(sequence_output)
1467
+ logits = self.score(sequence_output)
1468
+
1469
+ loss = None
1470
+ if labels is not None:
1471
+ loss = self.loss_function(logits, labels, self.config)
1472
+
1473
+ if not return_dict:
1474
+ output = (logits,) + outputs[2:]
1475
+ return ((loss,) + output) if loss is not None else output
1476
+
1477
+ return TokenClassifierOutput(
1478
+ loss=loss,
1479
+ logits=logits,
1480
+ hidden_states=outputs.hidden_states,
1481
+ attentions=outputs.attentions,
1482
+ )
1483
+
1484
+
1485
+ @add_start_docstrings(
1486
+ """
1487
+ The Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
1488
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1489
+ """,
1490
+ QWEN2_START_DOCSTRING,
1491
+ )
1492
+ class Qwen2ForQuestionAnswering(Qwen2PreTrainedModel):
1493
+ base_model_prefix = "transformer"
1494
+
1495
+ def __init__(self, config):
1496
+ super().__init__(config)
1497
+ self.transformer = Qwen2Model(config)
1498
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1499
+
1500
+ # Initialize weights and apply final processing
1501
+ self.post_init()
1502
+
1503
+ def get_input_embeddings(self):
1504
+ return self.transformer.embed_tokens
1505
+
1506
+ def set_input_embeddings(self, value):
1507
+ self.transformer.embed_tokens = value
1508
+
1509
+ @add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
1510
+ def forward(
1511
+ self,
1512
+ input_ids: Optional[torch.LongTensor] = None,
1513
+ attention_mask: Optional[torch.FloatTensor] = None,
1514
+ position_ids: Optional[torch.LongTensor] = None,
1515
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1516
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1517
+ start_positions: Optional[torch.LongTensor] = None,
1518
+ end_positions: Optional[torch.LongTensor] = None,
1519
+ output_attentions: Optional[bool] = None,
1520
+ output_hidden_states: Optional[bool] = None,
1521
+ return_dict: Optional[bool] = None,
1522
+ **kwargs,
1523
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1524
+ r"""
1525
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1526
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1527
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1528
+ are not taken into account for computing the loss.
1529
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1530
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1531
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1532
+ are not taken into account for computing the loss.
1533
+ """
1534
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1535
+
1536
+ outputs = self.transformer(
1537
+ input_ids,
1538
+ attention_mask=attention_mask,
1539
+ position_ids=position_ids,
1540
+ past_key_values=past_key_values,
1541
+ inputs_embeds=inputs_embeds,
1542
+ output_attentions=output_attentions,
1543
+ output_hidden_states=output_hidden_states,
1544
+ return_dict=return_dict,
1545
+ )
1546
+
1547
+ sequence_output = outputs[0]
1548
+
1549
+ logits = self.qa_outputs(sequence_output)
1550
+ start_logits, end_logits = logits.split(1, dim=-1)
1551
+ start_logits = start_logits.squeeze(-1).contiguous()
1552
+ end_logits = end_logits.squeeze(-1).contiguous()
1553
+
1554
+ loss = None
1555
+ if start_positions is not None and end_positions is not None:
1556
+ loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
1557
+
1558
+ if not return_dict:
1559
+ output = (start_logits, end_logits) + outputs[2:]
1560
+ return ((loss,) + output) if loss is not None else output
1561
+
1562
+ return QuestionAnsweringModelOutput(
1563
+ loss=loss,
1564
+ start_logits=start_logits,
1565
+ end_logits=end_logits,
1566
+ hidden_states=outputs.hidden_states,
1567
+ attentions=outputs.attentions,
1568
+ )
1569
+
1570
+
1571
+ def prepare_fa2_from_position_ids_for_mtp(position_ids, mtp_idx):
1572
+ position_ids = position_ids.flatten()
1573
+ indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
1574
+
1575
+ cu_seq_lens = torch.cat(
1576
+ (
1577
+ indices_q[position_ids == mtp_idx + 1],
1578
+ torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
1579
+ )
1580
+ )
1581
+
1582
+ max_length = position_ids.max() + 1 - 1 - mtp_idx
1583
+
1584
+ return cu_seq_lens, cu_seq_lens, max_length, max_length
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenization_qwen2.py ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for Qwen2."""
16
+
17
+ import json
18
+ import os
19
+ import unicodedata
20
+ from functools import lru_cache
21
+ from typing import Optional, Tuple
22
+
23
+ import regex as re
24
+
25
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
26
+ from transformers.utils import logging
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ VOCAB_FILES_NAMES = {
32
+ "vocab_file": "vocab.json",
33
+ "merges_file": "merges.txt",
34
+ }
35
+
36
+
37
+ MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
38
+
39
+ PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
40
+
41
+
42
+ @lru_cache()
43
+ # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
44
+ def bytes_to_unicode():
45
+ """
46
+ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
47
+ characters the bpe code barfs on.
48
+
49
+ The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
50
+ if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
51
+ decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
52
+ tables between utf-8 bytes and unicode strings.
53
+ """
54
+ bs = (
55
+ list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
56
+ )
57
+ cs = bs[:]
58
+ n = 0
59
+ for b in range(2**8):
60
+ if b not in bs:
61
+ bs.append(b)
62
+ cs.append(2**8 + n)
63
+ n += 1
64
+ cs = [chr(n) for n in cs]
65
+ return dict(zip(bs, cs))
66
+
67
+
68
+ # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
69
+ def get_pairs(word):
70
+ """
71
+ Return set of symbol pairs in a word.
72
+
73
+ Word is represented as tuple of symbols (symbols being variable-length strings).
74
+ """
75
+ pairs = set()
76
+ prev_char = word[0]
77
+ for char in word[1:]:
78
+ pairs.add((prev_char, char))
79
+ prev_char = char
80
+ return pairs
81
+
82
+
83
+ class Qwen2Tokenizer(PreTrainedTokenizer):
84
+ """
85
+ Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
86
+
87
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
88
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
89
+
90
+ ```python
91
+ >>> from transformers import Qwen2Tokenizer
92
+
93
+ >>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
94
+ >>> tokenizer("Hello world")["input_ids"]
95
+ [9707, 1879]
96
+
97
+ >>> tokenizer(" Hello world")["input_ids"]
98
+ [21927, 1879]
99
+ ```
100
+ This is expected.
101
+
102
+ You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
103
+
104
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
105
+ this superclass for more information regarding those methods.
106
+
107
+ Args:
108
+ vocab_file (`str`):
109
+ Path to the vocabulary file.
110
+ merges_file (`str`):
111
+ Path to the merges file.
112
+ errors (`str`, *optional*, defaults to `"replace"`):
113
+ Paradigm to follow when decoding bytes to UTF-8. See
114
+ [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
115
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
116
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
117
+ token instead.
118
+ bos_token (`str`, *optional*):
119
+ The beginning of sequence token. Not applicable for this tokenizer.
120
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
121
+ The end of sequence token.
122
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
123
+ The token used for padding, for example when batching sequences of different lengths.
124
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
125
+ Whether or not the model should cleanup the spaces that were added when splitting the input text during the
126
+ tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
127
+ split_special_tokens (`bool`, *optional*, defaults to `False`):
128
+ Whether or not the special tokens should be split during the tokenization process. The default behavior is
129
+ to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
130
+ ['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
131
+ '|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
132
+ """
133
+
134
+ vocab_files_names = VOCAB_FILES_NAMES
135
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
136
+ max_model_input_sizes = MAX_MODEL_INPUT_SIZES
137
+ model_input_names = ["input_ids", "attention_mask"]
138
+
139
+ def __init__(
140
+ self,
141
+ vocab_file,
142
+ merges_file,
143
+ errors="replace",
144
+ unk_token="<|endoftext|>",
145
+ bos_token=None,
146
+ eos_token="<|endoftext|>",
147
+ pad_token="<|endoftext|>",
148
+ clean_up_tokenization_spaces=False,
149
+ split_special_tokens=False,
150
+ **kwargs,
151
+ ):
152
+ # Qwen vocab does not contain control tokens; added tokens need to be special
153
+ bos_token = (
154
+ AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
155
+ if isinstance(bos_token, str)
156
+ else bos_token
157
+ )
158
+ eos_token = (
159
+ AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
160
+ if isinstance(eos_token, str)
161
+ else eos_token
162
+ )
163
+ unk_token = (
164
+ AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
165
+ if isinstance(unk_token, str)
166
+ else unk_token
167
+ )
168
+ pad_token = (
169
+ AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
170
+ if isinstance(pad_token, str)
171
+ else pad_token
172
+ )
173
+
174
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
175
+ self.encoder = json.load(vocab_handle)
176
+ self.decoder = {v: k for k, v in self.encoder.items()}
177
+ self.errors = errors # how to handle errors in decoding
178
+ self.byte_encoder = bytes_to_unicode()
179
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
180
+ bpe_merges = []
181
+ with open(merges_file, encoding="utf-8") as merges_handle:
182
+ for line in merges_handle:
183
+ line = line.strip()
184
+ if not line or line.startswith("#"):
185
+ continue
186
+ bpe_merges.append(tuple(line.split()))
187
+ self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
188
+ # NOTE: the cache can grow without bound and will get really large for long running processes
189
+ # (esp. for texts of language that do not use space between word, e.g. Chinese); technically
190
+ # not a memory leak but appears as one.
191
+ # GPT2Tokenizer has the same problem, so let's be consistent.
192
+ self.cache = {}
193
+
194
+ self.pat = re.compile(PRETOKENIZE_REGEX)
195
+
196
+ if kwargs.get("add_prefix_space", False):
197
+ logger.warning_once(
198
+ f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
199
+ )
200
+
201
+ super().__init__(
202
+ errors=errors,
203
+ bos_token=bos_token,
204
+ eos_token=eos_token,
205
+ pad_token=pad_token,
206
+ unk_token=unk_token,
207
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
208
+ split_special_tokens=split_special_tokens,
209
+ **kwargs,
210
+ )
211
+
212
+ @property
213
+ def vocab_size(self) -> int:
214
+ return len(self.encoder)
215
+
216
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
217
+ def get_vocab(self):
218
+ return dict(self.encoder, **self.added_tokens_encoder)
219
+
220
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
221
+ def bpe(self, token):
222
+ if token in self.cache:
223
+ return self.cache[token]
224
+ word = tuple(token)
225
+ pairs = get_pairs(word)
226
+
227
+ if not pairs:
228
+ return token
229
+
230
+ while True:
231
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
232
+ if bigram not in self.bpe_ranks:
233
+ break
234
+ first, second = bigram
235
+ new_word = []
236
+ i = 0
237
+ while i < len(word):
238
+ try:
239
+ j = word.index(first, i)
240
+ except ValueError:
241
+ new_word.extend(word[i:])
242
+ break
243
+ else:
244
+ new_word.extend(word[i:j])
245
+ i = j
246
+
247
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
248
+ new_word.append(first + second)
249
+ i += 2
250
+ else:
251
+ new_word.append(word[i])
252
+ i += 1
253
+ new_word = tuple(new_word)
254
+ word = new_word
255
+ if len(word) == 1:
256
+ break
257
+ else:
258
+ pairs = get_pairs(word)
259
+ word = " ".join(word)
260
+ self.cache[token] = word
261
+ return word
262
+
263
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
264
+ def _tokenize(self, text):
265
+ """Tokenize a string."""
266
+ bpe_tokens = []
267
+ for token in re.findall(self.pat, text):
268
+ token = "".join(
269
+ self.byte_encoder[b] for b in token.encode("utf-8")
270
+ ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
271
+ bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
272
+ return bpe_tokens
273
+
274
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
275
+ def _convert_token_to_id(self, token):
276
+ """Converts a token (str) in an id using the vocab."""
277
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
278
+
279
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
280
+ def _convert_id_to_token(self, index):
281
+ """Converts an index (integer) in a token (str) using the vocab."""
282
+ return self.decoder.get(index)
283
+
284
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
285
+ def convert_tokens_to_string(self, tokens):
286
+ """Converts a sequence of tokens (string) in a single string."""
287
+ text = "".join(tokens)
288
+ text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
289
+ return text
290
+
291
+ def decode(
292
+ self,
293
+ token_ids,
294
+ skip_special_tokens: bool = False,
295
+ clean_up_tokenization_spaces: Optional[bool] = False,
296
+ spaces_between_special_tokens: bool = False,
297
+ **kwargs,
298
+ ) -> str:
299
+ # `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
300
+ # and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
301
+ return super().decode(
302
+ token_ids,
303
+ skip_special_tokens=skip_special_tokens,
304
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
305
+ spaces_between_special_tokens=spaces_between_special_tokens,
306
+ **kwargs,
307
+ )
308
+
309
+ # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
310
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
311
+ if not os.path.isdir(save_directory):
312
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
313
+ return
314
+ vocab_file = os.path.join(
315
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
316
+ )
317
+ merge_file = os.path.join(
318
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
319
+ )
320
+
321
+ with open(vocab_file, "w", encoding="utf-8") as f:
322
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
323
+
324
+ index = 0
325
+ with open(merge_file, "w", encoding="utf-8") as writer:
326
+ writer.write("#version: 0.2\n")
327
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
328
+ if index != token_index:
329
+ logger.warning(
330
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
331
+ " Please check that the tokenizer is not corrupted!"
332
+ )
333
+ index = token_index
334
+ writer.write(" ".join(bpe_tokens) + "\n")
335
+ index += 1
336
+
337
+ return vocab_file, merge_file
338
+
339
+ def prepare_for_tokenization(self, text, **kwargs):
340
+ text = unicodedata.normalize("NFC", text)
341
+ return (text, kwargs)
tokenization_qwen2_fast.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization classes for Qwen2."""
16
+
17
+ from typing import Optional, Tuple
18
+
19
+ from transformers.tokenization_utils import AddedToken
20
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
21
+ from transformers.utils import logging
22
+ from .tokenization_qwen2 import Qwen2Tokenizer
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ VOCAB_FILES_NAMES = {
28
+ "vocab_file": "vocab.json",
29
+ "merges_file": "merges.txt",
30
+ "tokenizer_file": "tokenizer.json",
31
+ }
32
+
33
+
34
+ MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
35
+
36
+
37
+ class Qwen2TokenizerFast(PreTrainedTokenizerFast):
38
+ """
39
+ Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
40
+ Byte-Pair-Encoding.
41
+
42
+ Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
43
+ be encoded differently whether it is at the beginning of the sentence (without space) or not:
44
+
45
+ ```python
46
+ >>> from transformers import Qwen2TokenizerFast
47
+
48
+ >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
49
+ >>> tokenizer("Hello world")["input_ids"]
50
+ [9707, 1879]
51
+
52
+ >>> tokenizer(" Hello world")["input_ids"]
53
+ [21927, 1879]
54
+ ```
55
+ This is expected.
56
+
57
+ This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
58
+ refer to this superclass for more information regarding those methods.
59
+
60
+ Args:
61
+ vocab_file (`str`, *optional*):
62
+ Path to the vocabulary file.
63
+ merges_file (`str`, *optional*):
64
+ Path to the merges file.
65
+ tokenizer_file (`str`, *optional*):
66
+ Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
67
+ contains everything needed to load the tokenizer.
68
+ unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
69
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
70
+ token instead. Not applicable to this tokenizer.
71
+ bos_token (`str`, *optional*):
72
+ The beginning of sequence token. Not applicable for this tokenizer.
73
+ eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
74
+ The end of sequence token.
75
+ pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
76
+ The token used for padding, for example when batching sequences of different lengths.
77
+ """
78
+
79
+ vocab_files_names = VOCAB_FILES_NAMES
80
+ model_input_names = ["input_ids", "attention_mask"]
81
+ slow_tokenizer_class = Qwen2Tokenizer
82
+
83
+ def __init__(
84
+ self,
85
+ vocab_file=None,
86
+ merges_file=None,
87
+ tokenizer_file=None,
88
+ unk_token="<|endoftext|>",
89
+ bos_token=None,
90
+ eos_token="<|endoftext|>",
91
+ pad_token="<|endoftext|>",
92
+ **kwargs,
93
+ ):
94
+ # We need to at least pass vocab_file and merges_file to base class
95
+ # in case a slow tokenizer needs to be initialized; other can be
96
+ # configured through files.
97
+ # following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
98
+
99
+ bos_token = (
100
+ AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
101
+ if isinstance(bos_token, str)
102
+ else bos_token
103
+ )
104
+ eos_token = (
105
+ AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
106
+ if isinstance(eos_token, str)
107
+ else eos_token
108
+ )
109
+ unk_token = (
110
+ AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
111
+ if isinstance(unk_token, str)
112
+ else unk_token
113
+ )
114
+ pad_token = (
115
+ AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
116
+ if isinstance(pad_token, str)
117
+ else pad_token
118
+ )
119
+
120
+ super().__init__(
121
+ vocab_file=vocab_file,
122
+ merges_file=merges_file,
123
+ tokenizer_file=tokenizer_file,
124
+ unk_token=unk_token,
125
+ bos_token=bos_token,
126
+ eos_token=eos_token,
127
+ pad_token=pad_token,
128
+ **kwargs,
129
+ )
130
+
131
+ # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
132
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
133
+ files = self._tokenizer.model.save(save_directory, name=filename_prefix)
134
+ return tuple(files)
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
vocab.json ADDED
The diff for this file is too large to render. See raw diff