File size: 10,442 Bytes
3dc4081
 
 
 
 
 
 
 
 
 
 
2f527d4
3dc4081
 
2f527d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc4081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f527d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
language:
- de
- en
- it
- fr
- pt
- nl
- ru
- ar
- es
license: apache-2.0
tags:
- spectrum
model-index:
- name: SauerkrautLM-Nemo-12b-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: ENEM Challenge (No Images)
      type: eduagarcia/enem_challenge
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 70.05
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BLUEX (No Images)
      type: eduagarcia-temp/BLUEX_without_images
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 58.41
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: OAB Exams
      type: eduagarcia/oab_exams
      split: train
      args:
        num_few_shot: 3
    metrics:
    - type: acc
      value: 52.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 RTE
      type: assin2
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 92.65
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Assin2 STS
      type: eduagarcia/portuguese_benchmark
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: pearson
      value: 75.99
      name: pearson
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: FaQuAD NLI
      type: ruanchaves/faquad-nli
      split: test
      args:
        num_few_shot: 15
    metrics:
    - type: f1_macro
      value: 83.18
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HateBR Binary
      type: ruanchaves/hatebr
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 81.98
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: PT Hate Speech Binary
      type: hate_speech_portuguese
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 75.67
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: tweetSentBR
      type: eduagarcia/tweetsentbr_fewshot
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: f1_macro
      value: 72.31
      name: f1-macro
    source:
      url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
      name: Open Portuguese LLM Leaderboard
---

![SauerkrautLM-Nemo-12b-Instruct]( https://vago-solutions.ai/wp-content/uploads/2024/07/Sauerkraut-Nemo.png "SauerkrautLM-Nemo-12b-Instruct")
## VAGO solutions SauerkrautLM-Nemo-12b-Instruct

**Fine-tuned Model** - *to showcase the potential of resource-efficient Fine-Tuning of Large Language Models using **Spectrum Fine-Tuning***

Introducing **SauerkrautLM-Nemo-12b-Instruct** – our Sauerkraut version of the powerful [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)!

- Fine-tuning on German-English data with [**Spectrum**](https://github.com/cognitivecomputations/spectrum) Fine-Tuning **targeting 25% of the layers.**
- Utilized unique German-English Sauerkraut Mix v2
- Implemented bespoke, precision-engineered fine-tuning approach

# Table of Contents
1. [Overview of all SauerkrautLM-Nemo-12b-Instruct](#all-SauerkrautLM-Nemo-12b-Instruct)
2. [Model Details](#model-details)
   - [Training procedure](#training-procedure)
3. [Evaluation](#evaluation)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)

## All SauerkrautLM-Nemo-12b-Instruct

| Model | HF    | EXL2  | GGUF  | AWQ  |
|-------|-------|-------|-------|-------|
| SauerkrautLM-Nemo-12b-Instruct | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct) | coming soon | coming soon | coming soon |

## Model Details
**SauerkrautLM-Nemo-12b-Instruct**
- **Model Type:** SauerkrautLM-Nemo-12b-Instruct is a fine-tuned Model based on [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)
- **Language(s):** German, English
- **License:** Apache 2.0
- **Contact:** [VAGO solutions](https://vago-solutions.ai)

## Training Procedure

This model showcases the potential of resource-efficient fine-tuning of large language models using Spectrum Fine-Tuning. Here's a brief on the procedure:

**Fine-tuning on German-English Data**: 

- Utilized Spectrum Fine-Tuning, targeting 25% of the model's layers
- Introduced the model to a unique German-English Sauerkraut Mix v2
- Implemented a bespoke, precision-engineered fine-tuning approach

**Sauerkraut Mix v2**:

- Premium Dataset for Language Models, focusing on German and English
- Meticulously selected, high-quality dataset combinations
- Cutting-edge synthetic datasets created using proprietary, high-precision generation techniques

## Objective and Results

The primary goal of this training was to demonstrate that with Spectrum Fine-Tuning targeting 25% of the layers, a 12 billion parameter model can significantly enhance the capabilities while using a fraction of the resources of the classic fine-tuning approach.

The model has substantially improved skills in German and English, as demonstrated by impressive benchmarks on the new Hugging Face leaderboard. At the same time, our fine-tuning improved skills in all other languages that Nemo can speak, showing  inter-language effects in LLM performance.

**Spectrum Fine-Tuning can efficiently enhance a large language model's capabilities in multiple languages while preserving the majority of its previously acquired knowledge.**

## Evaluation

**AGIEVAL**
![SauerkrautLM-Nemo-12b-Instruct-AGIEVAL]( https://vago-solutions.ai/wp-content/uploads/2024/07/agieval2.png "SauerkrautLM-Nemo-12b-Instruct-AGIEVAL")

**GPT4ALL**
![SauerkrautLM-Nemo-12b-Instruct-GPT4ALL]( https://vago-solutions.ai/wp-content/uploads/2024/07/gpt4all2.png "SauerkrautLM-Nemo-12b-Instruct-GPT4ALL")

**TRUTHFULQA**
![SauerkrautLM-Nemo-12b-Instruct-TRUTHFULQA]( https://vago-solutions.ai/wp-content/uploads/2024/07/tqa2.png "SauerkrautLM-Nemo-12b-Instruct-TRUTHFULQA")

**OPENLEADERBOARD 2**
![SauerkrautLM-Nemo-12b-Instruct-OPENLEADERBOARD]( https://vago-solutions.ai/wp-content/uploads/2024/07/hf2.png "SauerkrautLM-Nemo-12b-Instruct-OPENLEADERBOARD")

**MMLU 5-Shot**
![SauerkrautLM-Nemo-12b-Instruct-MMLU]( https://vago-solutions.ai/wp-content/uploads/2024/07/mmlu.png "SauerkrautLM-Nemo-12b-Instruct-MMLU")

## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
 
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
 
## Collaborations
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)

## Acknowledgement
Many thanks to [Mistral AI](https://huggingface.co/mistralai) for providing such a valuable model to the Open-Source community.


# Open Portuguese LLM Leaderboard Evaluation Results  

Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)

|          Metric          |  Value  |
|--------------------------|---------|
|Average                   |**73.64**|
|ENEM Challenge (No Images)|    70.05|
|BLUEX (No Images)         |    58.41|
|OAB Exams                 |    52.53|
|Assin2 RTE                |    92.65|
|Assin2 STS                |    75.99|
|FaQuAD NLI                |    83.18|
|HateBR Binary             |    81.98|
|PT Hate Speech Binary     |    75.67|
|tweetSentBR               |    72.31|