File size: 10,442 Bytes
3dc4081 2f527d4 3dc4081 2f527d4 3dc4081 2f527d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
language:
- de
- en
- it
- fr
- pt
- nl
- ru
- ar
- es
license: apache-2.0
tags:
- spectrum
model-index:
- name: SauerkrautLM-Nemo-12b-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 70.05
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 58.41
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 52.53
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 92.65
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 75.99
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 83.18
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 81.98
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 75.67
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 72.31
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct
name: Open Portuguese LLM Leaderboard
---
![SauerkrautLM-Nemo-12b-Instruct]( https://vago-solutions.ai/wp-content/uploads/2024/07/Sauerkraut-Nemo.png "SauerkrautLM-Nemo-12b-Instruct")
## VAGO solutions SauerkrautLM-Nemo-12b-Instruct
**Fine-tuned Model** - *to showcase the potential of resource-efficient Fine-Tuning of Large Language Models using **Spectrum Fine-Tuning***
Introducing **SauerkrautLM-Nemo-12b-Instruct** – our Sauerkraut version of the powerful [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)!
- Fine-tuning on German-English data with [**Spectrum**](https://github.com/cognitivecomputations/spectrum) Fine-Tuning **targeting 25% of the layers.**
- Utilized unique German-English Sauerkraut Mix v2
- Implemented bespoke, precision-engineered fine-tuning approach
# Table of Contents
1. [Overview of all SauerkrautLM-Nemo-12b-Instruct](#all-SauerkrautLM-Nemo-12b-Instruct)
2. [Model Details](#model-details)
- [Training procedure](#training-procedure)
3. [Evaluation](#evaluation)
5. [Disclaimer](#disclaimer)
6. [Contact](#contact)
7. [Collaborations](#collaborations)
8. [Acknowledgement](#acknowledgement)
## All SauerkrautLM-Nemo-12b-Instruct
| Model | HF | EXL2 | GGUF | AWQ |
|-------|-------|-------|-------|-------|
| SauerkrautLM-Nemo-12b-Instruct | [Link](https://huggingface.co/VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct) | coming soon | coming soon | coming soon |
## Model Details
**SauerkrautLM-Nemo-12b-Instruct**
- **Model Type:** SauerkrautLM-Nemo-12b-Instruct is a fine-tuned Model based on [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)
- **Language(s):** German, English
- **License:** Apache 2.0
- **Contact:** [VAGO solutions](https://vago-solutions.ai)
## Training Procedure
This model showcases the potential of resource-efficient fine-tuning of large language models using Spectrum Fine-Tuning. Here's a brief on the procedure:
**Fine-tuning on German-English Data**:
- Utilized Spectrum Fine-Tuning, targeting 25% of the model's layers
- Introduced the model to a unique German-English Sauerkraut Mix v2
- Implemented a bespoke, precision-engineered fine-tuning approach
**Sauerkraut Mix v2**:
- Premium Dataset for Language Models, focusing on German and English
- Meticulously selected, high-quality dataset combinations
- Cutting-edge synthetic datasets created using proprietary, high-precision generation techniques
## Objective and Results
The primary goal of this training was to demonstrate that with Spectrum Fine-Tuning targeting 25% of the layers, a 12 billion parameter model can significantly enhance the capabilities while using a fraction of the resources of the classic fine-tuning approach.
The model has substantially improved skills in German and English, as demonstrated by impressive benchmarks on the new Hugging Face leaderboard. At the same time, our fine-tuning improved skills in all other languages that Nemo can speak, showing inter-language effects in LLM performance.
**Spectrum Fine-Tuning can efficiently enhance a large language model's capabilities in multiple languages while preserving the majority of its previously acquired knowledge.**
## Evaluation
**AGIEVAL**
![SauerkrautLM-Nemo-12b-Instruct-AGIEVAL]( https://vago-solutions.ai/wp-content/uploads/2024/07/agieval2.png "SauerkrautLM-Nemo-12b-Instruct-AGIEVAL")
**GPT4ALL**
![SauerkrautLM-Nemo-12b-Instruct-GPT4ALL]( https://vago-solutions.ai/wp-content/uploads/2024/07/gpt4all2.png "SauerkrautLM-Nemo-12b-Instruct-GPT4ALL")
**TRUTHFULQA**
![SauerkrautLM-Nemo-12b-Instruct-TRUTHFULQA]( https://vago-solutions.ai/wp-content/uploads/2024/07/tqa2.png "SauerkrautLM-Nemo-12b-Instruct-TRUTHFULQA")
**OPENLEADERBOARD 2**
![SauerkrautLM-Nemo-12b-Instruct-OPENLEADERBOARD]( https://vago-solutions.ai/wp-content/uploads/2024/07/hf2.png "SauerkrautLM-Nemo-12b-Instruct-OPENLEADERBOARD")
**MMLU 5-Shot**
![SauerkrautLM-Nemo-12b-Instruct-MMLU]( https://vago-solutions.ai/wp-content/uploads/2024/07/mmlu.png "SauerkrautLM-Nemo-12b-Instruct-MMLU")
## Disclaimer
We must inform users that despite our best efforts in data cleansing, the possibility of uncensored content slipping through cannot be entirely ruled out. However, we cannot guarantee consistently appropriate behavior. Therefore, if you encounter any issues or come across inappropriate content, we kindly request that you inform us through the contact information provided. Additionally, it is essential to understand that the licensing of these models does not constitute legal advice. We are not held responsible for the actions of third parties who utilize our models.
## Contact
If you are interested in customized LLMs for business applications, please get in contact with us via our website. We are also grateful for your feedback and suggestions.
## Collaborations
We are also keenly seeking support and investment for our startup, VAGO solutions where we continuously advance the development of robust language models designed to address a diverse range of purposes and requirements. If the prospect of collaboratively navigating future challenges excites you, we warmly invite you to reach out to us at [VAGO solutions](https://vago-solutions.ai)
## Acknowledgement
Many thanks to [Mistral AI](https://huggingface.co/mistralai) for providing such a valuable model to the Open-Source community.
# Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/VAGOsolutions/SauerkrautLM-Nemo-12b-Instruct) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
| Metric | Value |
|--------------------------|---------|
|Average |**73.64**|
|ENEM Challenge (No Images)| 70.05|
|BLUEX (No Images) | 58.41|
|OAB Exams | 52.53|
|Assin2 RTE | 92.65|
|Assin2 STS | 75.99|
|FaQuAD NLI | 83.18|
|HateBR Binary | 81.98|
|PT Hate Speech Binary | 75.67|
|tweetSentBR | 72.31|
|