Universal-NER commited on
Commit
44e19d9
·
1 Parent(s): a05cc0b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc
3
+ language:
4
+ - en
5
+ ---
6
+
7
+ ---
8
+
9
+ # UniNER-7B-definition
10
+
11
+ **Description**: A UniNER-7B model trained from LLama-7B using the [Pile-NER-definition data](https://huggingface.co/datasets/Universal-NER/Pile-NER-definition) without human-labeled data. The data was collected by prompting gpt-3.5-turbo-0301 to label entities from passages and provide short-sentence definitions. The data collection prompt is as follows:
12
+
13
+ <div style="background-color: #f6f8fa; padding: 20px; border-radius: 10px; border: 1px solid #e1e4e8; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
14
+ <strong>Instruction:</strong><br/>
15
+ Given a paragraph, your task is to extract all entities and concepts,
16
+ and define their type using a short sentence. The output should be in the following format:
17
+ [("entity", "definition of entity type in a short sentence"), ... ]
18
+ </div>
19
+
20
+ Check our [paper](https://arxiv.org/abs/2308.03279) for more information.
21
+
22
+ ## Comparison with [UniNER-7B-type](https://huggingface.co/Universal-NER/UniNER-7B-type)
23
+ The UniNER-7B-type model, trained on Pile-NER-type, excels in recognizing common and short NER tags (e.g., person, location) and performs better on NER datasets. On the other hand, UniNER-7B-definition demonstrates superior capabilities in understanding short-sentence definitions of entity types. Additionally, it exhibits enhanced robustness against variations in type paraphrasing.
24
+
25
+ ## Inference
26
+ The template for inference instances is as follows:
27
+ <div style="background-color: #f6f8fa; padding: 20px; border-radius: 10px; border: 1px solid #e1e4e8; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
28
+ <strong>Prompting template:</strong><br/>
29
+ A virtual assistant answers questions from a user based on the provided text.<br/>
30
+ USER: Text: <span style="color: #d73a49;">{Fill the input text here}</span><br/>
31
+ ASSISTANT: I’ve read this text.<br/>
32
+ USER: What describes <span style="color: #d73a49;">{Fill the entity type here}</span> in the text?<br/>
33
+ ASSISTANT: <span style="color: #0366d6;">(model's predictions in JSON format)</span><br/>
34
+ </div>
35
+
36
+ ### Note: Inferences are based on one entity type at a time. For multiple entity types, create separate instances for each type.
37
+
38
+ ## License
39
+
40
+ This model and its associated data are released under the [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. They are primarily used for research purposes.
41
+
42
+ ## Citation
43
+
44
+ ```bibtex
45
+ @article{zhou2023universalner,
46
+ title={UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition},
47
+ author={Wenxuan Zhou and Sheng Zhang and Yu Gu and Muhao Chen and Hoifung Poon},
48
+ year={2023},
49
+ eprint={2308.03279},
50
+ archivePrefix={arXiv},
51
+ primaryClass={cs.CL}
52
+ }
53
+ ```