Update README.md
Browse files
README.md
CHANGED
@@ -11,53 +11,286 @@ tags:
|
|
11 |
- unsloth
|
12 |
licence: license
|
13 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
|
18 |
-
This model is a fine-tuned version of [
|
19 |
-
It has been trained using [TRL](https://github.com/huggingface/trl).
|
20 |
|
21 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
```python
|
24 |
-
from transformers import
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
```
|
31 |
|
32 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
|
|
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
|
41 |
-
|
42 |
-
- TRL: 0.19.1
|
43 |
-
- Transformers: 4.53.1
|
44 |
-
- Pytorch: 2.7.1
|
45 |
-
- Datasets: 4.0.0
|
46 |
-
- Tokenizers: 0.21.2
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
|
|
|
51 |
|
52 |
-
Cite TRL as:
|
53 |
-
|
54 |
```bibtex
|
55 |
-
@misc{
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
howpublished = {\url{https://github.com/huggingface/trl}}
|
62 |
}
|
63 |
```
|
|
|
11 |
- unsloth
|
12 |
licence: license
|
13 |
pipeline_tag: text-generation
|
14 |
+
license: apache-2.0
|
15 |
+
datasets:
|
16 |
+
- UWV/wim-instruct-signaalberichten-to-jsonld-agent-steps
|
17 |
+
language:
|
18 |
+
- nl
|
19 |
---
|
20 |
|
21 |
+
# Phi-4-mini N5 Label Addition Fine-tune
|
22 |
|
23 |
+
This model is a fine-tuned version of [microsoft/Phi-4-mini-instruct](https://huggingface.co/microsoft/Phi-4-mini-instruct) optimized for adding human-readable labels (rdfs:label) to JSON-LD structures, trained as part of the WIM (Text-to-Knowledge Graph) pipeline on the signaalberichten dataset.
|
|
|
24 |
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
### Model Description
|
28 |
+
|
29 |
+
- **Developed by:** UWV InnovatieHub
|
30 |
+
- **Model type:** Causal Language Model with LoRA fine-tuning
|
31 |
+
- **Language(s):** Dutch (nl)
|
32 |
+
- **License:** MIT
|
33 |
+
- **Finetuned from:** microsoft/Phi-4-mini-instruct (3.82B parameters)
|
34 |
+
- **Training Framework:** Unsloth (optimized training for efficient processing)
|
35 |
+
|
36 |
+
### Training Details
|
37 |
+
|
38 |
+
- **Dataset:** [UWV/wim_instruct_signaalberichten_to_jsonld_agent_steps](https://huggingface.co/datasets/UWV/wim_instruct_signaalberichten_to_jsonld_agent_steps)
|
39 |
+
- **Dataset Size:** 4,525 N5-specific examples (label addition tasks)
|
40 |
+
- **Training Duration:** 1 hour 44 minutes
|
41 |
+
- **Hardware:** NVIDIA A100 80GB
|
42 |
+
- **Epochs:** 3.1
|
43 |
+
- **Steps:** 1,735
|
44 |
+
- **Training Metrics:**
|
45 |
+
- Final Training Loss: 0.7864
|
46 |
+
- Training samples/second: 2.209
|
47 |
+
- Learning rate (final): 6.26e-10
|
48 |
+
|
49 |
+
### LoRA Configuration
|
50 |
+
|
51 |
+
```python
|
52 |
+
{
|
53 |
+
"r": 512, # Large rank for quality
|
54 |
+
"lora_alpha": 1024, # Alpha (2:1 ratio)
|
55 |
+
"lora_dropout": 0.1, # Higher dropout for small dataset
|
56 |
+
"bias": "none",
|
57 |
+
"task_type": "CAUSAL_LM",
|
58 |
+
"target_modules": [
|
59 |
+
"q_proj", "k_proj", "v_proj", "o_proj" # Attention layers only
|
60 |
+
]
|
61 |
+
}
|
62 |
+
```
|
63 |
+
|
64 |
+
### Training Configuration
|
65 |
+
|
66 |
+
```python
|
67 |
+
{
|
68 |
+
"model": "phi4-mini",
|
69 |
+
"max_seq_length": 4096,
|
70 |
+
"batch_size": 8,
|
71 |
+
"gradient_accumulation_steps": 1,
|
72 |
+
"effective_batch_size": 8,
|
73 |
+
"learning_rate": 2e-5,
|
74 |
+
"warmup_steps": 50,
|
75 |
+
"max_grad_norm": 1.0,
|
76 |
+
"lr_scheduler": "cosine",
|
77 |
+
"optimizer": "paged_adamw_8bit",
|
78 |
+
"bf16": True,
|
79 |
+
"seed": 42
|
80 |
+
}
|
81 |
+
```
|
82 |
+
|
83 |
+
## Intended Uses & Limitations
|
84 |
+
|
85 |
+
### Intended Uses
|
86 |
+
|
87 |
+
- **Label Addition**: Add human-readable Dutch labels (rdfs:label) to JSON-LD structures
|
88 |
+
- **Knowledge Graph Enhancement**: Fifth step (N5) in the WIM pipeline
|
89 |
+
- **Government Services**: Optimized for citizen complaints and government service descriptions
|
90 |
+
- **JSON-LD Enrichment**: Make knowledge graphs more accessible with descriptive labels
|
91 |
+
|
92 |
+
### Limitations
|
93 |
+
|
94 |
+
- Trained on signaalberichten dataset (different domain than N1-N3)
|
95 |
+
- Best performance on government/municipal service contexts
|
96 |
+
- Requires well-formed JSON-LD as input
|
97 |
+
- Limited to 4K token context (sufficient for label addition)
|
98 |
+
- Small training dataset (4,525 examples)
|
99 |
+
|
100 |
+
## How to Use
|
101 |
+
|
102 |
+
### Option 1: Using the Merged Model (Recommended)
|
103 |
+
|
104 |
+
```python
|
105 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
106 |
+
import torch
|
107 |
+
import json
|
108 |
+
|
109 |
+
# Load the merged model (ready to use)
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(
|
111 |
+
"UWV/wim-n5-phi4-mini-merged",
|
112 |
+
torch_dtype=torch.bfloat16,
|
113 |
+
device_map="auto",
|
114 |
+
trust_remote_code=True
|
115 |
+
)
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained("UWV/wim-n5-phi4-mini-merged")
|
117 |
+
|
118 |
+
# Prepare input - JSON-LD without labels (citizen complaint)
|
119 |
+
json_ld = {
|
120 |
+
"@context": "https://schema.org",
|
121 |
+
"@type": "Report",
|
122 |
+
"about": {
|
123 |
+
"@type": "CivicStructure",
|
124 |
+
"name": "Speeltuin Vondelpark"
|
125 |
+
},
|
126 |
+
"reportedBy": {
|
127 |
+
"@type": "Person",
|
128 |
+
"address": {
|
129 |
+
"@type": "PostalAddress",
|
130 |
+
"addressLocality": "Amsterdam"
|
131 |
+
}
|
132 |
+
}
|
133 |
+
}
|
134 |
+
|
135 |
+
messages = [
|
136 |
+
{
|
137 |
+
"role": "system",
|
138 |
+
"content": "Je bent een expert in het toevoegen van Nederlandse labels aan JSON-LD."
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"role": "user",
|
142 |
+
"content": f"""Voeg rdfs:label toe aan de volgende JSON-LD:
|
143 |
+
|
144 |
+
{json.dumps(json_ld, ensure_ascii=False, indent=2)}
|
145 |
+
|
146 |
+
Geef de complete JSON-LD terug met labels."""
|
147 |
+
}
|
148 |
+
]
|
149 |
+
|
150 |
+
# Apply chat template and generate
|
151 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
152 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
|
153 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
154 |
+
|
155 |
+
with torch.no_grad():
|
156 |
+
outputs = model.generate(
|
157 |
+
**inputs,
|
158 |
+
max_new_tokens=1000,
|
159 |
+
temperature=0.1, # Low temperature for consistent labeling
|
160 |
+
do_sample=True,
|
161 |
+
top_p=0.95,
|
162 |
+
pad_token_id=tokenizer.pad_token_id,
|
163 |
+
eos_token_id=tokenizer.eos_token_id,
|
164 |
+
)
|
165 |
+
|
166 |
+
# Decode response
|
167 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
168 |
+
if "assistant:" in response:
|
169 |
+
response = response.split("assistant:")[-1].strip()
|
170 |
+
|
171 |
+
print(response)
|
172 |
+
```
|
173 |
+
|
174 |
+
### Option 2: Using the LoRA Adapter
|
175 |
|
176 |
```python
|
177 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
178 |
+
from peft import PeftModel
|
179 |
+
import torch
|
180 |
|
181 |
+
# Load base model
|
182 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
183 |
+
"microsoft/Phi-4-mini-instruct",
|
184 |
+
torch_dtype=torch.bfloat16,
|
185 |
+
device_map="auto",
|
186 |
+
trust_remote_code=True
|
187 |
+
)
|
188 |
+
|
189 |
+
# Load adapter
|
190 |
+
model = PeftModel.from_pretrained(
|
191 |
+
base_model,
|
192 |
+
"UWV/wim-n5-phi4-mini-adapter"
|
193 |
+
)
|
194 |
+
tokenizer = AutoTokenizer.from_pretrained("UWV/wim-n5-phi4-mini-adapter")
|
195 |
+
|
196 |
+
# Use same inference code as above...
|
197 |
```
|
198 |
|
199 |
+
## Expected Output Format
|
200 |
+
|
201 |
+
The model adds `rdfs:label` properties to make JSON-LD more human-readable:
|
202 |
+
|
203 |
+
```json
|
204 |
+
{
|
205 |
+
"@context": "https://schema.org",
|
206 |
+
"@type": "Report",
|
207 |
+
"rdfs:label": "Melding",
|
208 |
+
"about": {
|
209 |
+
"@type": "CivicStructure",
|
210 |
+
"rdfs:label": "Speeltuin Vondelpark",
|
211 |
+
"name": "Speeltuin Vondelpark"
|
212 |
+
},
|
213 |
+
"reportedBy": {
|
214 |
+
"@type": "Person",
|
215 |
+
"rdfs:label": "Melder",
|
216 |
+
"address": {
|
217 |
+
"@type": "PostalAddress",
|
218 |
+
"rdfs:label": "Adres in Amsterdam",
|
219 |
+
"addressLocality": "Amsterdam"
|
220 |
+
}
|
221 |
+
}
|
222 |
+
}
|
223 |
+
```
|
224 |
+
|
225 |
+
## Dataset Information
|
226 |
+
|
227 |
+
The model was trained on the [UWV/wim-instruct-signaalberichten-to-jsonld-agent-steps](https://huggingface.co/datasets/UWV/wim-instruct-signaalberichten-to-jsonld-agent-steps) dataset, which contains:
|
228 |
+
|
229 |
+
- **Source**: Signaalberichten (citizen complaints to municipalities)
|
230 |
+
- **Domain**: Government services and municipal operations
|
231 |
+
- **N5 Examples**: 4,525 label addition tasks
|
232 |
+
- **Average Token Length**: 1,636 tokens
|
233 |
+
- **Max Token Length**: 2,332 tokens
|
234 |
+
- **Format**: ChatML-formatted instruction-following examples
|
235 |
+
- **Task**: Add Dutch rdfs:label properties to JSON-LD
|
236 |
+
|
237 |
+
**Important**: This dataset is different from the Wikipedia-based dataset used for N1-N3 models.
|
238 |
+
|
239 |
+
## Training Results
|
240 |
+
|
241 |
+
The model completed 3.1 epochs through the dataset:
|
242 |
+
- **Final Training Loss**: 0.7864
|
243 |
+
- **Training Efficiency**: 2.209 samples/second
|
244 |
+
|
245 |
+
### Loss Progression
|
246 |
+
- Started at ~1.13 loss
|
247 |
+
- Rapid improvement in first epoch
|
248 |
+
- Stable convergence throughout training
|
249 |
+
- Final learning rate: 6.26e-10 (cosine decay)
|
250 |
+
- Gradient norms: Stable around 0.6-0.7
|
251 |
+
|
252 |
+
## Model Versions
|
253 |
+
|
254 |
+
- **Merged Model**: `UWV/wim-n5-phi4-mini-merged`
|
255 |
+
- Note: Merge failed due to known Phi-4 issue
|
256 |
+
- Adapter weights saved instead
|
257 |
+
- Model works fine for inference
|
258 |
+
|
259 |
+
- **LoRA Adapter**: `UWV/wim-n5-phi4-mini-adapter` (~2.29 GB)
|
260 |
+
- Requires base Phi-4-mini-instruct model
|
261 |
+
- Large adapter due to r=512
|
262 |
+
- Includes all training configurations
|
263 |
|
264 |
+
## Pipeline Context
|
265 |
|
266 |
+
This model is part of the WIM (Text-to-Knowledge Graph) pipeline:
|
267 |
|
268 |
+
1. **N1**: Entity Extraction
|
269 |
+
2. **N2**: Schema.org Type Selection
|
270 |
+
3. **N3**: Transform to JSON-LD
|
271 |
+
4. **N4**: Validation
|
272 |
+
5. **N5 (This Model)**: Add Human-Readable Labels
|
273 |
|
274 |
+
N5 is trained on a different dataset (signaalberichten) than N1-N3, focusing on government services and citizen interactions rather than encyclopedic content.
|
275 |
|
276 |
+
## Performance Characteristics
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
+
- **Sequence Length**: Average 1,636 tokens (moderate length)
|
279 |
+
- **Batch Processing**: Can handle batch size 8 with 4K context
|
280 |
+
- **Inference Speed**: Fast label addition to existing JSON-LD
|
281 |
+
- **Memory Usage**: ~10GB VRAM with 4K context
|
282 |
+
- **Domain**: Specialized for Dutch government/municipal contexts
|
283 |
|
284 |
+
## Citation
|
285 |
|
286 |
+
If you use this model, please cite:
|
287 |
|
|
|
|
|
288 |
```bibtex
|
289 |
+
@misc{wim-n5-phi4-mini,
|
290 |
+
author = {UWV InnovatieHub},
|
291 |
+
title = {Phi-4-mini N5 Label Addition Model},
|
292 |
+
year = {2025},
|
293 |
+
publisher = {HuggingFace},
|
294 |
+
url = {https://huggingface.co/UWV/wim-n5-phi4-mini-merged}
|
|
|
295 |
}
|
296 |
```
|