File size: 3,197 Bytes
44fadd3 ff65e7b 44fadd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
id: mirrorbert_MedRoBERTa.nl_clstoken
name: mirrorbert_MedRoBERTa.nl_clstoken
description: MedRoBERTa.nl continued pre-training on hard medical terms pairs from
the SNOMED and UMLS ontology, using the infoNCE loss function
license: gpl-3.0
language: nl
tags:
- biomedical
- embedding
- lexical semantic
- entity linking
- bionlp
- science
- biology
pipeline_tag: feature-extraction
---
# Model Card for Mirrorbert Medroberta.Nl Clstoken
The model was trained on about 8 millions medical entity pairs (term, synonym)
### Expected input and output
The input should be a string of biomedical entity names, e.g., "covid infection" or "Hydroxychloroquine". The [CLS] embedding of the last layer is regarded as the output.
#### Extracting embeddings from mirrorbert_MedRoBERTa.nl_clstoken
The following script converts a list of strings (entity names) into embeddings.
```python
import numpy as np
import torch
from tqdm.auto import tqdm
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("UMCU/mirrorbert_MedRoBERTa.nl_clstoken")
model = AutoModel.from_pretrained("UMCU/mirrorbert_MedRoBERTa.nl_clstoken").cuda()
# replace with your own list of entity names
all_names = ["covid-19", "Coronavirus infection", "high fever", "Tumor of posterior wall of oropharynx"]
bs = 128 # batch size during inference
all_embs = []
for i in tqdm(np.arange(0, len(all_names), bs)):
toks = tokenizer.batch_encode_plus(all_names[i:i+bs],
padding="max_length",
max_length=25,
truncation=True,
return_tensors="pt")
toks_cuda = {}
for k,v in toks.items():
toks_cuda[k] = v.cuda()
cls_rep = model(**toks_cuda)[0][:,0,:]
all_embs.append(cls_rep.cpu().detach().numpy())
all_embs = np.concatenate(all_embs, axis=0)
```
# Data description
Hard Dutch ontological synonym pairs (terms referring to the same CUI/SCUI).
# Acknowledgement
This is part of the [DT4H project](https://www.datatools4heart.eu/).
# Doi and reference
For more details about training and eval, see MirrorBERT [github repo](https://github.com/cambridgeltl/mirror-bert).
### Citation
```bibtex
@inproceedings{liu-etal-2021-fast,
title = "Fast, Effective, and Self-Supervised: Transforming Masked Language Models into Universal Lexical and Sentence Encoders",
author = "Liu, Fangyu and
Vuli{'c}, Ivan and
Korhonen, Anna and
Collier, Nigel",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.109",
pages = "1442--1459",
}
```
For more details about training/eval and other scripts, see CardioNER [github repo](https://github.com/DataTools4Heart/CardioNER).
and for more information on the background, see Datatools4Heart [Huggingface](https://huggingface.co/DT4H)/[Website](https://www.datatools4heart.eu/)
|