--- base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3 license: - llama3.1 - gemma language: - ja - en pipeline_tag: text-generation tags: - counseling - dialogue-system datasets: - UEC-InabaLab/KokoroChat --- # 🧠 Llama-3.1-KokoroChat-Full: Japanese Counseling Dialogue Model **Llama-3.1-KokoroChat-Full** is a large-scale Japanese language model fine-tuned on the **entire KokoroChat dataset**—a collection of over 6,000 psychological counseling dialogues conducted via **role-play between trained counselors**. The model is capable of generating **empathetic and context-aware responses** suitable for mental health-related conversational tasks. --- ## 💡 Overview - ✅ Fine-tuned on **6,471 dialogues** with feedback scores ≀ 98 (from the full KokoroChat dataset of 6,589 dialogues; 118 high-score dialogues reserved for testing) - ✅ Data collected through **text-based role-play** by trained counselors - ✅ Covers a wide range of topics: depression, family, school, career, relationships, and more - ✅ Base Model: [`tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3`](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.3) --- ## ⚙ Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "UEC-InabaLab/Llama-3.1-KokoroChat-Full" # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") # Set pad_token_id if tokenizer.pad_token_id is None: tokenizer.pad_token = "[PAD]" tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids("[PAD]") model.config.pad_token_id = tokenizer.pad_token_id # Build dialogue input messages = [ {"role": "system", "content": "ćżƒç†ă‚«ă‚Šăƒłă‚»ăƒȘăƒłă‚°ăźäŒšè©±ă«ăŠă„ăŠă€ćŻŸè©±ć±„æ­Žă‚’è€ƒæ…źă—ă€ă‚«ă‚Šăƒłă‚»ăƒ©ăƒŒăšă—ăŠé©ćˆ‡ă«ćżœç­”ă—ăŠăă ă•ă„ă€‚"}, {"role": "user", "content": "æœ€èż‘ă€æ°—ćˆ†ăŒèœăĄèŸŒă‚“ă§ă‚„ă‚‹æ°—ăŒć‡șăŸă›ă‚“ă€‚"} ] # Tokenize with chat template inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) attention_mask = inputs.ne(tokenizer.pad_token_id) # Generate response outputs = model.generate( inputs, attention_mask=attention_mask, pad_token_id=tokenizer.pad_token_id, max_new_tokens=256 ) # Extract only the newly generated tokens response = outputs[0][inputs.shape[-1]:] response_text = tokenizer.decode(response, skip_special_tokens=True) # Print clean response print(response_text) ``` --- ## đŸ› ïž Fine-Tuning Details Fine-tuning was performed using **QLoRA** with the following configuration: - **Quantization**: 4-bit NF4 with bfloat16 computation - **LoRA target modules**: `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj` - **LoRA parameters**: - `r = 8` - `lora_alpha = 16` - `lora_dropout = 0.05` ### Dataset Split - **Training Data**: 6,471 dialogues with feedback scores ≀ 98 *(from the full KokoroChat dataset of 6,589 dialogues; 118 dialogues with scores of 99 or 100 were reserved for testing)* - **Train/Validation Split**: 90% train, 10% validation ### Hyperparameter Settings - **Optimizer**: `adamw_8bit` - **Warm-up Steps**: `100` - **Learning Rate**: `1e-3` - **Epochs**: `5` - **Batch Size**: `8` - **Validation Frequency**: every 400 steps --- ## 📄 Citation If you use this model or dataset, please cite the following paper: ```bibtex @inproceedings{qi2025kokorochat, title = {KokoroChat: A Japanese Psychological Counseling Dialogue Dataset Collected via Role-Playing by Trained Counselors}, author = {Zhiyang Qi and Takumasa Kaneko and Keiko Takamizo and Mariko Ukiyo and Michimasa Inaba}, booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics}, year = {2025}, url = {https://github.com/UEC-InabaLab/KokoroChat} } ``` --- ## 🔗 Related - 📁 **Dataset**: - [KokoroChat on Hugging Face Datasets](https://huggingface.co/datasets/UEC-InabaLab/KokoroChat) - [KokoroChat on GitHub (UEC-InabaLab)](https://github.com/UEC-InabaLab/KokoroChat) - đŸ€– **Model Variants**: - [Llama-3.1-KokoroChat-Low](https://huggingface.co/UEC-InabaLab/Llama-3.1-KokoroChat-Low): fine-tuned on **3,870 dialogues** with client feedback scores **< 70** - [Llama-3.1-KokoroChat-High](https://huggingface.co/UEC-InabaLab/Llama-3.1-KokoroChat-High): fine-tuned on **2,601 dialogues** with client feedback scores between **70 and 98** - 📄 **Paper**: [ACL 2025 Paper (arXiv)](https://arxiv.org/abs/2506.01357)