Triangle104 commited on
Commit
93d24e7
·
verified ·
1 Parent(s): bab194d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +140 -0
README.md CHANGED
@@ -15,6 +15,146 @@ base_model: anthracite-org/magnum-v4-12b
15
  This model was converted to GGUF format from [`anthracite-org/magnum-v4-12b`](https://huggingface.co/anthracite-org/magnum-v4-12b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
16
  Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-12b) for more details on the model.
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ## Use with llama.cpp
19
  Install llama.cpp through brew (works on Mac and Linux)
20
 
 
15
  This model was converted to GGUF format from [`anthracite-org/magnum-v4-12b`](https://huggingface.co/anthracite-org/magnum-v4-12b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
16
  Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-12b) for more details on the model.
17
 
18
+ ---
19
+ Model details:
20
+ -
21
+ This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
22
+
23
+ This model is fine-tuned on top of mistralai/Mistral-Nemo-Instruct-2407.
24
+ Prompting
25
+
26
+ A typical input would look like this:
27
+
28
+ <s>[INST] SYSTEM MESSAGE
29
+ USER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST]
30
+
31
+ SillyTavern templates
32
+ -
33
+ Below are Instruct and Context templates for use within SillyTavern.
34
+ context template
35
+
36
+ default SillyTavern template works fine
37
+
38
+ instruct template
39
+ -
40
+ default SillyTavern template works fine
41
+
42
+ Axolotl config
43
+ -
44
+ See axolotl config
45
+
46
+ base_model: mistralai/Mistral-Nemo-Instruct-2407
47
+ model_type: AutoModelForCausalLM
48
+ tokenizer_type: AutoTokenizer
49
+
50
+ hub_model_id: anthracite-org/magnum-v4-12b-r2
51
+ hub_strategy: "all_checkpoints"
52
+ push_dataset_to_hub:
53
+ hf_use_auth_token: true
54
+
55
+ plugins:
56
+ - axolotl.integrations.liger.LigerPlugin
57
+ liger_rope: true
58
+ liger_rms_norm: true
59
+ liger_swiglu: true
60
+ liger_fused_linear_cross_entropy: true
61
+
62
+ load_in_8bit: false
63
+ load_in_4bit: false
64
+ strict: false
65
+
66
+ datasets:
67
+ - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
68
+ type: custommistralv3tekken
69
+ - path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
70
+ type: custommistralv3tekken
71
+ - path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system
72
+ type: custommistralv3tekken
73
+ - path: anthracite-org/nopm_claude_writing_fixed
74
+ type: custommistralv3tekken
75
+ - path: anthracite-org/kalo_opus_misc_240827_no_system
76
+ type: custommistralv3tekken
77
+ - path: anthracite-org/kalo_misc_part2_no_system
78
+ type: custommistralv3tekken
79
+ #chat_template: chatml
80
+ shuffle_merged_datasets: true
81
+ #default_system_message: "You are an assistant that responds to the user."
82
+ dataset_prepared_path: /workspace/data/magnum-12b-data
83
+ val_set_size: 0.0
84
+ output_dir: /workspace/data/12b-fft-out
85
+
86
+ sequence_len: 32768
87
+ sample_packing: true
88
+ pad_to_sequence_len: true
89
+
90
+ adapter:
91
+ lora_model_dir:
92
+ lora_r:
93
+ lora_alpha:
94
+ lora_dropout:
95
+ lora_target_linear:
96
+ lora_fan_in_fan_out:
97
+
98
+ wandb_project: 12b-magnum-fft
99
+ wandb_entity:
100
+ wandb_watch:
101
+ wandb_name: v4-r2-attempt-01
102
+ wandb_log_model:
103
+
104
+ gradient_accumulation_steps: 2
105
+ micro_batch_size: 1
106
+ num_epochs: 2
107
+ optimizer: adamw_bnb_8bit
108
+ lr_scheduler: cosine
109
+ learning_rate: 0.00001
110
+
111
+ train_on_inputs: false
112
+ group_by_length: false
113
+ bf16: auto
114
+ fp16:
115
+ tf32: false
116
+
117
+ gradient_checkpointing: true
118
+ early_stopping_patience:
119
+ resume_from_checkpoint:
120
+ local_rank:
121
+ logging_steps: 1
122
+ xformers_attention:
123
+ flash_attention: true
124
+
125
+ warmup_steps: 40
126
+ evals_per_epoch:
127
+ eval_table_size:
128
+ eval_max_new_tokens:
129
+ saves_per_epoch: 2
130
+ debug:
131
+ deepspeed: deepspeed_configs/zero2.json
132
+ weight_decay: 0.1
133
+ fsdp:
134
+ fsdp_config:
135
+ special_tokens:
136
+ pad_token: <pad>
137
+
138
+
139
+ Credits
140
+ -
141
+ We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
142
+
143
+ We would also like to thank all members of Anthracite who made this finetune possible.
144
+ Datasets
145
+
146
+ anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
147
+ anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system
148
+ anthracite-org/kalo-opus-instruct-3k-filtered-no-system
149
+ anthracite-org/nopm_claude_writing_fixed
150
+ anthracite-org/kalo_opus_misc_240827_no_system
151
+ anthracite-org/kalo_misc_part2_no_system
152
+
153
+ Training
154
+ -
155
+ The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model.
156
+
157
+ ---
158
  ## Use with llama.cpp
159
  Install llama.cpp through brew (works on Mac and Linux)
160