File size: 3,051 Bytes
a728ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef74610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a728ae0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
library_name: transformers
pipeline_tag: text-generation
tags:
- 192k context
- reasoning
- thinking
- qwen3
- uncensored
- llama-cpp
- gguf-my-repo
base_model: DavidAU/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored
---

# Triangle104/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored-Q4_K_M-GGUF
This model was converted to GGUF format from [`DavidAU/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored`](https://huggingface.co/DavidAU/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/DavidAU/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored) for more details on the model.

---
This repo is for Goekdeniz-Guelmez's excellent 
"Josiefied-Qwen3-8B-abliterated-v1", modified from 32k (32768) context 
to 192 k (196608) context modified using YARN as per tech notes at Qwen 
repo.


ORG model repo for this fine tune:


[ https://huggingface.co/Goekdeniz-Guelmez/Josiefied-Qwen3-8B-abliterated-v1 ]


Max context on this version is : 192k (196608)


Suggest min context limit of : 8k to 16k for "thinking" / "output".


This model can output 2k to over 13k.


To improve long form output performance (especially creative):


Temp 1+, 2+ or higher.
Top k 100+
Rep pen 1.02-1.09


Use Jinja Template or CHATML template.


Please refer the QWEN model card for details, benchmarks, how to use, settings, turning reasoning on/off/ system roles etc etc :


[ https://huggingface.co/Qwen/Qwen3-8B ]

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-192k-context-6x-josiefied-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-192k-context-6x-josiefied-uncensored-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-192k-context-6x-josiefied-uncensored-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Qwen3-8B-192k-Context-6X-Josiefied-Uncensored-Q4_K_M-GGUF --hf-file qwen3-8b-192k-context-6x-josiefied-uncensored-q4_k_m.gguf -c 2048
```