File size: 5,455 Bytes
4d40769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd592a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d40769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
license: llama3.1
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- reasoning
- math
- llama-cpp
- gguf-my-repo
base_model: prithivMLmods/Megatron-Opus-7B-Exp
---

# Triangle104/Megatron-Opus-7B-Exp-Q6_K-GGUF
This model was converted to GGUF format from [`prithivMLmods/Megatron-Opus-7B-Exp`](https://huggingface.co/prithivMLmods/Megatron-Opus-7B-Exp) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Megatron-Opus-7B-Exp) for more details on the model.

---
Megatron-Opus-7B-Exp is based on the Qwen 2.5 7B modality architecture, designed to enhance the reasoning capabilities of 7B-parameter models. It has been fine-tuned on a Synthetic dataset entries based on one half of Qwen’s QWQ and DeepSeek R1, further optimizing its chain-of-thought (CoT) reasoning and logical problem-solving abilities. The model demonstrates significant improvements in context understanding, structured data processing, and long-context comprehension, making it ideal for complex reasoning tasks, instruction-following, and text generation.

Key Improvements

    Advanced Reasoning & Logic: Optimized for multi-step problem-solving, logical deduction, and contextual analysis.
    Fine-Tuned Instruction Following: Generates precise responses, structured outputs (e.g., JSON), and extended long-form text (8K+ tokens).
    Greater Adaptability: Excels in role-playing, multi-turn dialogues, and diverse system prompts.
    Long-Context Support: Handles up to 128K tokens and generates up to 8K tokens per output.
    Multilingual Proficiency: Supports over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, and more.

Quickstart with Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Megatron-Opus-7B-Exp"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Explain the concept of logical reasoning in AI."
messages = [
    {"role": "system", "content": "You are an expert AI assistant specialized in reasoning and logic."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

Intended Use

    Advanced Logical & Analytical Reasoning: Designed for problem-solving, multi-step deductions, and cognitive reasoning tasks.
    Mathematical & Scientific Computation: Supports theorem proving, complex calculations, and scientific knowledge retrieval.
    Code Generation & Debugging: Generates optimized code, detects errors, and improves programming workflows.
    Structured Data Analysis: Processes tables, JSON, and structured formats for data-centric applications.
    Multilingual Reasoning & Translation: High proficiency across 29+ languages for international applications.
    Extended Text Generation: Capable of generating research papers, instructional guides, and in-depth reports.

Limitations

    High Computational Requirements: Due to its 7B parameters and 128K context support, it requires powerful GPUs or TPUs for efficient inference.
    Language-Specific Variability: Performance may differ across supported languages, especially for low-resource languages.
    Potential Error Accumulation: Long-form text generation can introduce inconsistencies over extended outputs.
    Limited Real-World Awareness: Knowledge is restricted to training data and may not reflect recent world events.
    Prompt Sensitivity: The quality of responses depends on the specificity and clarity of the input prompt.

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Megatron-Opus-7B-Exp-Q6_K-GGUF --hf-file megatron-opus-7b-exp-q6_k.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Megatron-Opus-7B-Exp-Q6_K-GGUF --hf-file megatron-opus-7b-exp-q6_k.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Megatron-Opus-7B-Exp-Q6_K-GGUF --hf-file megatron-opus-7b-exp-q6_k.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Megatron-Opus-7B-Exp-Q6_K-GGUF --hf-file megatron-opus-7b-exp-q6_k.gguf -c 2048
```