--- base_model: allura-org/MS3.2-24b-Angel library_name: transformers tags: - axolotl - unsloth - roleplay - conversational - llama-cpp - gguf-my-repo datasets: - PygmalionAI/PIPPA - Alfitaria/nemotron-ultra-reasoning-synthkink - PocketDoc/Dans-Prosemaxx-Gutenberg - FreedomIntelligence/Medical-R1-Distill-Data - cognitivecomputations/SystemChat-2.0 - allenai/tulu-3-sft-personas-instruction-following - kalomaze/Opus_Instruct_25k - simplescaling/s1K-claude-3-7-sonnet - ai2-adapt-dev/flan_v2_converted - grimulkan/theory-of-mind - grimulkan/physical-reasoning - nvidia/HelpSteer3 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo - nbeerbower/Purpura-DPO - antiven0m/physical-reasoning-dpo - allenai/tulu-3-IF-augmented-on-policy-70b - allenai/href --- # Triangle104/MS3.2-24b-Angel-Q8_0-GGUF This model was converted to GGUF format from [`allura-org/MS3.2-24b-Angel`](https://huggingface.co/allura-org/MS3.2-24b-Angel) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/allura-org/MS3.2-24b-Angel) for more details on the model. --- MS3.2-24b-Angel is a model finetuned from Mistral Small 3.2 for roleplaying, storywriting, and differently-flavored general instruct usecases. Testing revealed strong prose and character portrayal for its class, rivalling the preferred 72B models of some testers. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/MS3.2-24b-Angel-Q8_0-GGUF --hf-file ms3.2-24b-angel-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/MS3.2-24b-Angel-Q8_0-GGUF --hf-file ms3.2-24b-angel-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/MS3.2-24b-Angel-Q8_0-GGUF --hf-file ms3.2-24b-angel-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/MS3.2-24b-Angel-Q8_0-GGUF --hf-file ms3.2-24b-angel-q8_0.gguf -c 2048 ```