--- license: apache-2.0 base_model: huihui-ai/Huihui-MoE-23B-A4B-abliterated library_name: transformers license_link: https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE pipeline_tag: text-generation tags: - moe - llama-cpp - gguf-my-repo --- # Triangle104/Huihui-MoE-23B-A4B-abliterated-Q3_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Huihui-MoE-23B-A4B-abliterated`](https://huggingface.co/huihui-ai/Huihui-MoE-23B-A4B-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Huihui-MoE-23B-A4B-abliterated) for more details on the model. --- Huihui-MoE-23B-A4B-abliterated is a Mixture of Experts (MoE) language model developed by huihui.ai, built upon the huihui-ai/Huihui-Qwen3-4B-abliterated-v2 base model. It enhances the standard Transformer architecture by replacing MLP layers with MoE layers, each containing 8 experts, to achieve high performance with efficient inference. The model is designed for natural language processing tasks, including text generation, question answering, and conversational applications. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Huihui-MoE-23B-A4B-abliterated-Q3_K_M-GGUF --hf-file huihui-moe-23b-a4b-abliterated-q3_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Huihui-MoE-23B-A4B-abliterated-Q3_K_M-GGUF --hf-file huihui-moe-23b-a4b-abliterated-q3_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Huihui-MoE-23B-A4B-abliterated-Q3_K_M-GGUF --hf-file huihui-moe-23b-a4b-abliterated-q3_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Huihui-MoE-23B-A4B-abliterated-Q3_K_M-GGUF --hf-file huihui-moe-23b-a4b-abliterated-q3_k_m.gguf -c 2048 ```