Triangle104 commited on
Commit
a9d1edc
·
verified ·
1 Parent(s): 3313e42

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -0
README.md CHANGED
@@ -10,6 +10,161 @@ base_model: FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ## Use with llama.cpp
14
  Install llama.cpp through brew (works on Mac and Linux)
15
 
 
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
13
+
14
+ ---
15
+ Overview
16
+ -
17
+
18
+ FuseO1-Preview
19
+ is our initial endeavor to enhance the System-II reasoning capabilities
20
+ of large language models (LLMs) through innovative model fusion
21
+ techniques. By employing our advanced SCE
22
+ merging methodologies, we integrate multiple open-source o1-like LLMs
23
+ into a unified model. Our goal is to incorporate the distinct knowledge
24
+ and strengths from different reasoning LLMs into a single, unified model
25
+ with strong System-II reasoning abilities, particularly in mathematics,
26
+ coding, and science domains.
27
+
28
+ To achieve this, we conduct two types of model merging:
29
+
30
+
31
+ Long-Long Reasoning Merging: This approach involves
32
+ model fusion across LLMs that utilize long-CoT reasoning, with the goal
33
+ of enhancing long-CoT reasoning capabilities. The resulted FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview achieves a Pass@1 accuracy of 74.0 on AIME24,
34
+ demonstrating significant performance improvements compared to the
35
+ OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching
36
+ OpenAI o1 (79.2).
37
+ Long-Short Reasoning Merging: This approach
38
+ involves model fusion between long-CoT and short-CoT LLMs, aiming to
39
+ improve reasoning capabilities in both long and short reasoning
40
+ processes. The resulted FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview and FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview
41
+ is capable of utilizing both long and short reasoning processes and
42
+ demonstrates relatively strong performance in long reasoning tasks.
43
+
44
+ Long-Long Reasoning Merging
45
+
46
+
47
+
48
+
49
+ We conduct experiments on these folloing long-cot LLMs.
50
+
51
+
52
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
53
+ Qwen/QwQ-32B-Preview
54
+ NovaSky-AI/Sky-T1-32B-Preview
55
+
56
+
57
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview model, using the script below.
58
+
59
+
60
+ cd FuseAI/FuseO1-Preview/mergekit
61
+ pip3 install -e .
62
+ model_save_dir=xx # your path to save the merged models
63
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas
64
+
65
+
66
+
67
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview model, using the script below.
68
+
69
+
70
+ cd FuseAI/FuseO1-Preview/mergekit
71
+ pip3 install -e .
72
+ model_save_dir=xxx # your path to save the merged models
73
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda
74
+
75
+
76
+
77
+ We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.
78
+
79
+
80
+ from vllm import LLM, SamplingParams
81
+
82
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
83
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
84
+
85
+ conversations = [
86
+ [
87
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
88
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
89
+ ],
90
+ ]
91
+
92
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
93
+
94
+ for response in responses:
95
+ print(response.outputs[0].text.strip())
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+ Long-Short Reasoning Merging
105
+
106
+
107
+
108
+
109
+ We conduct experiments on these folloing long-cot and short-cot LLMs.
110
+
111
+
112
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
113
+ Qwen/Qwen2.5-32B-Instruct
114
+ Qwen/Qwen2.5-32B-Coder
115
+
116
+
117
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview model, using the script below.
118
+
119
+
120
+ cd FuseAI/FuseO1-Preview/mergekit
121
+ pip3 install -e .
122
+ model_save_dir=xxx # your path to save the merged models
123
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview --cuda
124
+
125
+
126
+
127
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview model, using the script below.
128
+
129
+
130
+ cd FuseAI/FuseO1-Preview/mergekit
131
+ pip3 install -e .
132
+ model_save_dir=xxx # your path to save the merged models
133
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda
134
+
135
+
136
+
137
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview model, using the script below.
138
+
139
+
140
+ cd FuseAI/FuseO1-Preview/mergekit
141
+ pip3 install -e .
142
+ model_save_dir=xxx # your path to save the merged models
143
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda
144
+
145
+
146
+
147
+ We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.
148
+
149
+
150
+ from vllm import LLM, SamplingParams
151
+
152
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
153
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
154
+
155
+ conversations = [
156
+ [
157
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
158
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
159
+ ],
160
+ ]
161
+
162
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
163
+
164
+ for response in responses:
165
+ print(response.outputs[0].text.strip())
166
+
167
+ ---
168
  ## Use with llama.cpp
169
  Install llama.cpp through brew (works on Mac and Linux)
170