Triangle104 commited on
Commit
d8b3232
·
verified ·
1 Parent(s): 60c9da4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +148 -0
README.md CHANGED
@@ -10,6 +10,154 @@ tags:
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ## Use with llama.cpp
14
  Install llama.cpp through brew (works on Mac and Linux)
15
 
 
10
  This model was converted to GGUF format from [`FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview`](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview) for more details on the model.
12
 
13
+ ---
14
+ Overview
15
+ -
16
+
17
+ FuseO1-Preview
18
+ is our initial endeavor to enhance the System-II reasoning capabilities
19
+ of large language models (LLMs) through innovative model fusion
20
+ techniques. By employing our advanced SCE
21
+ merging methodologies, we integrate multiple open-source o1-like LLMs
22
+ into a unified model. Our goal is to incorporate the distinct knowledge
23
+ and strengths from different reasoning LLMs into a single, unified model
24
+ with strong System-II reasoning abilities, particularly in mathematics,
25
+ coding, and science domains.
26
+
27
+ To achieve this, we conduct two types of model merging:
28
+
29
+
30
+ Long-Long Reasoning Merging: This approach involves
31
+ model fusion across LLMs that utilize long-CoT reasoning, with the goal
32
+ of enhancing long-CoT reasoning capabilities. The resulted FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview achieves a Pass@1 accuracy of 74.0 on AIME24,
33
+ demonstrating significant performance improvements compared to the
34
+ OpenAI o1-preview (44.6) and OpenAI o1-mini (63.4), even approaching
35
+ OpenAI o1 (79.2).
36
+ Long-Short Reasoning Merging: This approach
37
+ involves model fusion between long-CoT and short-CoT LLMs, aiming to
38
+ improve reasoning capabilities in both long and short reasoning
39
+ processes. The resulted FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview and FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview
40
+ is capable of utilizing both long and short reasoning processes and
41
+ demonstrates relatively strong performance in long reasoning tasks.
42
+
43
+ Long-Long Reasoning Merging
44
+
45
+
46
+
47
+
48
+ We conduct experiments on these folloing long-cot LLMs.
49
+
50
+
51
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
52
+ Qwen/QwQ-32B-Preview
53
+ NovaSky-AI/Sky-T1-32B-Preview
54
+
55
+
56
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview model, using the script below.
57
+
58
+
59
+ cd FuseAI/FuseO1-Preview/mergekit
60
+ pip3 install -e .
61
+ model_save_dir=xx # your path to save the merged models
62
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview --cudas
63
+
64
+
65
+
66
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-32B-Preview model, using the script below.
67
+
68
+
69
+ cd FuseAI/FuseO1-Preview/mergekit
70
+ pip3 install -e .
71
+ model_save_dir=xxx # your path to save the merged models
72
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-32B-Preview --cuda
73
+
74
+
75
+
76
+ We provide the example code to use FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview.
77
+
78
+
79
+ from vllm import LLM, SamplingParams
80
+
81
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview", tensor_parallel_size=8)
82
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
83
+
84
+ conversations = [
85
+ [
86
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
87
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
88
+ ],
89
+ ]
90
+
91
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
92
+
93
+ for response in responses:
94
+ print(response.outputs[0].text.strip())
95
+
96
+
97
+ Long-Short Reasoning Merging
98
+
99
+
100
+
101
+
102
+ We conduct experiments on these folloing long-cot and short-cot LLMs.
103
+
104
+
105
+ deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
106
+ Qwen/Qwen2.5-32B-Instruct
107
+ Qwen/Qwen2.5-32B-Coder
108
+
109
+
110
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview model, using the script below.
111
+
112
+
113
+ cd FuseAI/FuseO1-Preview/mergekit
114
+ pip3 install -e .
115
+ model_save_dir=xxx # your path to save the merged models
116
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-QwQ-SkyT1-Flash-32B-Preview --cuda
117
+
118
+
119
+
120
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview model, using the script below.
121
+
122
+
123
+ cd FuseAI/FuseO1-Preview/mergekit
124
+ pip3 install -e .
125
+ model_save_dir=xxx # your path to save the merged models
126
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview --cuda
127
+
128
+
129
+
130
+ To reproduce the merged FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview model, using the script below.
131
+
132
+
133
+ cd FuseAI/FuseO1-Preview/mergekit
134
+ pip3 install -e .
135
+ model_save_dir=xxx # your path to save the merged models
136
+ mergekit-yaml fuseo1_configs/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview.yaml ${model_save_dir}/FuseO1-DeepSeekR1-Qwen2.5-Coder-32B-Preview --cuda
137
+
138
+
139
+
140
+ We provide the code to use FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview.
141
+
142
+
143
+ from vllm import LLM, SamplingParams
144
+
145
+ llm = LLM(model="FuseAI/FuseO1-DeepSeekR1-Qwen2.5-Instruct-32B-Preview", tensor_parallel_size=8)
146
+ sampling_params = SamplingParams(max_tokens=32768, temperature=0.7, stop=["<|im_end|>", "<|end▁of▁sentence|>"], stop_token_ids=[151645, 151643])
147
+
148
+ conversations = [
149
+ [
150
+ {"role": "system", "content": "Please reason step by step, and put your final answer within \\boxed{{}}."},
151
+ {"role": "user", "content": "Quadratic polynomials $P(x)$ and $Q(x)$ have leading coefficients $2$ and $-2,$ respectively. The graphs of both polynomials pass through the two points $(16,54)$ and $(20,53).$ Find $P(0) + Q(0).$."},
152
+ ],
153
+ ]
154
+
155
+ responses = llm.chat(messages=conversations, sampling_params=sampling_params, use_tqdm=True)
156
+
157
+ for response in responses:
158
+ print(response.outputs[0].text.strip())
159
+
160
+ ---
161
  ## Use with llama.cpp
162
  Install llama.cpp through brew (works on Mac and Linux)
163