--- language: - en library_name: transformers pipeline_tag: text-generation tags: - esper - esper-3 - valiant - valiant-labs - qwen - qwen-3 - qwen-3-8b - 8b - deepseek - deepseek-r1-0528 - deepseek-r1 - reasoning - code - code-instruct - python - javascript - dev-ops - jenkins - terraform - scripting - powershell - azure - aws - gcp - cloud - problem-solving - architect - engineer - developer - creative - analytical - expert - rationality - conversational - chat - instruct - llama-cpp - gguf-my-repo base_model: ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3 datasets: - sequelbox/Titanium2.1-DeepSeek-R1 - sequelbox/Tachibana2-DeepSeek-R1 - sequelbox/Raiden-DeepSeek-R1 license: apache-2.0 --- # Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q4_K_M-GGUF This model was converted to GGUF format from [`ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3`](https://huggingface.co/ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ValiantLabs/DeepSeek-R1-0528-Qwen3-8B-Esper3) for more details on the model. --- Esper 3 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3. - Finetuned on our DevOps and architecture reasoning and code reasoning data generated with Deepseek R1! - Improved general and creative reasoning to supplement problem-solving and general chat performance. - Small model sizes allow running on local desktop and mobile, plus super-fast server inference! --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/DeepSeek-R1-0528-Qwen3-8B-Esper3-Q4_K_M-GGUF --hf-file deepseek-r1-0528-qwen3-8b-esper3-q4_k_m.gguf -c 2048 ```