File size: 2,622 Bytes
1545186 cb2ca95 1545186 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
datasets:
- open-r1/Mixture-of-Thoughts
- nvidia/OpenCodeReasoning
language:
- en
base_model: prithivMLmods/Capricornus-MoT-1.7B-Supreme1
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- math
- science
- moe
- code
- llama-cpp
- gguf-my-repo
---
# Triangle104/Capricornus-MoT-1.7B-Supreme1-Q4_K_M-GGUF
This model was converted to GGUF format from [`prithivMLmods/Capricornus-MoT-1.7B-Supreme1`](https://huggingface.co/prithivMLmods/Capricornus-MoT-1.7B-Supreme1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/prithivMLmods/Capricornus-MoT-1.7B-Supreme1) for more details on the model.
---
Capricornus-MoT-1.7B-Supreme1 is a high-precision, multi-domain expert model fine-tuned from Qwen3-1.7B, built for code generation, mathematical reasoning, scientific analysis, and open technical inference. Trained on the Mixture of Thoughts (MoT) dataset with combined expert clusters in code, math, and science, and enhanced with an Open Code Reasoning dataset, it delivers powerful symbolic and structured outputs in a wide range of STEM and reasoning domains.
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Capricornus-MoT-1.7B-Supreme1-Q4_K_M-GGUF --hf-file capricornus-mot-1.7b-supreme1-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Capricornus-MoT-1.7B-Supreme1-Q4_K_M-GGUF --hf-file capricornus-mot-1.7b-supreme1-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Capricornus-MoT-1.7B-Supreme1-Q4_K_M-GGUF --hf-file capricornus-mot-1.7b-supreme1-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Capricornus-MoT-1.7B-Supreme1-Q4_K_M-GGUF --hf-file capricornus-mot-1.7b-supreme1-q4_k_m.gguf -c 2048
```
|