File size: 4,529 Bytes
c3bf349 75d1adc c3bf349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
base_model: Spestly/Athena-1-0.5B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---
# Triangle104/Athena-1-0.5B-Q8_0-GGUF
This model was converted to GGUF format from [`Spestly/Athena-1-0.5B`](https://huggingface.co/Spestly/Athena-1-0.5B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-1-0.5B) for more details on the model.
---
Model details:
-
Athena-1 0.5B is a fine-tuned, instruction-following large language model derived from Qwen/Qwen2.5-0.5B-Instruct.
Designed for ultra-lightweight applications, Athena-1 0.5B balances
compactness with robust performance, making it suitable for tasks with
limited computational resources.
Key Features
⚡ Ultra-Lightweight and Efficient
Compact Size: With just 500 million parameters, Athena-1 0.5B is ideal for edge devices and low-resource environments.
Instruction Following: Fine-tuned for reliable adherence to user instructions.
Coding and Mathematics: Capable of handling basic coding and mathematical tasks.
📖 Contextual Understanding
Context Length: Supports up to 16,384 tokens, enabling processing of moderately sized conversations or documents.
Token Generation: Can generate up to 4K tokens of coherent output.
🌍 Multilingual Support
Supports 20+ languages, including:
English, Chinese, French, Spanish, German, Italian, Russian
Japanese, Korean, Vietnamese, Thai, and more.
📊 Structured Data & Outputs
Structured Data Interpretation: Handles formats like tables and JSON effectively.
Structured Output Generation: Produces well-formatted outputs for data-specific tasks.
Model Details
Base Model: Qwen/Qwen2.5-0.5B-Instruct
Architecture: Transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias, and tied word embeddings.
Parameters: 500M total.
Layers: (Adjust if different from the base model)
Attention Heads: (Adjust if different from the base model)
Context Length: Up to 16,384 tokens.
Applications
Athena-1 0.5B is optimized for:
Conversational AI: Power lightweight and responsive chatbots.
Code Assistance: Basic code generation, debugging, and explanations.
Mathematical Assistance: Solves fundamental math problems.
Document Processing: Summarizes and analyzes smaller documents effectively.
Multilingual Tasks: Supports global use cases with a compact model.
Structured Data: Reads and generates structured formats like JSON and tables.
Quickstart
Here’s how you can use Athena-1 0.5B for quick text generation:
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "What can you do?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-0.5B") # Update model name
print(pipe(messages))
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-0.5B") # Update model name
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-0.5B") # Update model name
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-1-0.5B-Q8_0-GGUF --hf-file athena-1-0.5b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Athena-1-0.5B-Q8_0-GGUF --hf-file athena-1-0.5b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-1-0.5B-Q8_0-GGUF --hf-file athena-1-0.5b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Athena-1-0.5B-Q8_0-GGUF --hf-file athena-1-0.5b-q8_0.gguf -c 2048
```
|