--- license: apache-2.0 language: - en - tr base_model: - Qwen/Qwen3-32B tags: - cybersecurity --- # Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF
Model Type Base Model Quantization License Language
## 🛡️ Model Overview **Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF** represents a paradigmatic shift in the application of large language models to the cybersecurity domain. This model, architected upon the Qwen3-32B foundation and optimized through Q8_0 quantization in GGUF format, embodies a sophisticated approach to AI-driven security operations. The model's development reflects a comprehensive understanding of the intricate requirements of modern cybersecurity practices, integrating advanced natural language processing capabilities with domain-specific expertise. ### Key Characteristics - **Architecture**: Qwen3-32B base model with specialized cybersecurity fine-tuning utilizing advanced transformer architectures - **Quantization**: Q8_0 GGUF format implementing optimal performance-to-precision trade-offs - **Training Infrastructure**: 3×NVIDIA H200 GPUs with distributed training paradigms - **Training Duration**: ~100 hours (approximately 2 months of iterative training with continuous evaluation) - **Non-commercial**: This model operates under strict non-profit principles - **Safety-first Design**: Incorporates multi-layered safety mechanisms to prevent malicious exploitation ## 📊 Technical Specifications ### Model Architecture Details ```yaml Base Model: Qwen3-32B Parameters: 32,762,762,240 (32.76B) Quantization: Q8_0 (8-bit symmetric quantization) Format: GGUF (GPT-Generated Unified Format) v3 Context Length: 32,768 tokens (with RoPE scaling capability up to 131,072) Embedding Dimension: 5,120 Hidden Dimension: 13,696 Number of Layers: 64 Attention Heads: 40 (GQA with 8 KV heads) Vocabulary Size: 151,936 Activation Function: SwiGLU Position Encoding: Rotary Position Embeddings (RoPE) Normalization: RMSNorm (ε=1e-6) ``` ### Advanced Training Configuration ```python from dataclasses import dataclass from typing import Dict, List, Optional, Union import torch from transformers import TrainingArguments @dataclass class CybersecurityTrainingConfig: """Advanced configuration for cybersecurity-focused LLM training""" # Hardware Configuration hardware_config: Dict[str, Union[str, int]] = { "gpus": "3×NVIDIA H200 (80GB HBM3e)", "total_vram": 240, # GB "interconnect": "NVLink 4.0", "cpu": "AMD EPYC 9654 96-Core", "ram": 1024, # GB "storage": "NVMe RAID-0 8TB" } # Training Hyperparameters training_args: TrainingArguments = TrainingArguments( output_dir="./cybersec-llm-checkpoints", num_train_epochs=3, per_device_train_batch_size=4, per_device_eval_batch_size=2, gradient_accumulation_steps=8, gradient_checkpointing=True, warmup_steps=1000, weight_decay=0.01, logging_steps=10, save_steps=500, eval_steps=100, evaluation_strategy="steps", save_strategy="steps", load_best_model_at_end=True, metric_for_best_model="cybersec_composite_score", greater_is_better=True, fp16=False, bf16=True, tf32=True, dataloader_num_workers=8, remove_unused_columns=False, push_to_hub=True, report_to=["tensorboard", "wandb"], logging_first_step=True, deepspeed="configs/deepspeed_stage3.json" ) # Advanced Optimization Parameters optimization_config: Dict[str, any] = { "optimizer": "AdamW", "adam_beta1": 0.9, "adam_beta2": 0.999, "adam_epsilon": 1e-8, "max_grad_norm": 1.0, "learning_rate": 2e-5, "lr_scheduler_type": "cosine_with_restarts", "num_cycles": 3, "gradient_penalty": 0.1, "label_smoothing": 0.1 } # Domain-Specific Training Configuration cybersec_config: Dict[str, any] = { "vulnerability_weight": 2.5, "exploit_weight": 1.8, "defense_weight": 3.0, "ethical_weight": 5.0, "adversarial_training": True, "robust_optimization": True, "safety_threshold": 0.95 } # Dataset Configuration dataset_config: Dict[str, Union[str, float]] = { "total_size": "~500GB", "vulnerability_databases": 0.25, "security_advisories": 0.20, "research_papers": 0.15, "incident_reports": 0.15, "malware_samples": 0.10, "security_tools": 0.10, "best_practices": 0.05, "augmentation_ratio": 0.3, "synthetic_data_ratio": 0.2 } ``` ## 🎯 Specialized Cybersecurity Domains The model demonstrates exceptional proficiency across six critical cybersecurity verticals, each representing a distinct operational paradigm within the security ecosystem: ### 1. **Incident Response (IR)** Advanced capabilities in orchestrating comprehensive incident response workflows: ```python class IncidentResponseOrchestrator: """Sophisticated incident response automation framework""" def __init__(self, model, config): self.model = model self.config = config self.incident_db = IncidentDatabase() self.threat_intel = ThreatIntelligenceAPI() async def analyze_incident(self, incident_data: Dict) -> IncidentReport: """ Comprehensive incident analysis with multi-stage processing """ # Stage 1: Initial Classification classification = await self._classify_incident(incident_data) # Stage 2: Threat Intelligence Correlation threat_context = await self.threat_intel.correlate( indicators=incident_data.get('iocs', []), ttps=classification.get('ttps', []) ) # Stage 3: Impact Assessment impact_analysis = await self._assess_impact( incident_data, classification, threat_context ) # Stage 4: Response Strategy Generation response_plan = await self._generate_response_plan( classification=classification, impact=impact_analysis, resources=self.config.available_resources ) # Stage 5: Automated Containment Actions containment_results = await self._execute_containment( response_plan.immediate_actions ) return IncidentReport( classification=classification, threat_context=threat_context, impact_analysis=impact_analysis, response_plan=response_plan, containment_results=containment_results, recommendations=await self._generate_recommendations() ) async def _classify_incident(self, data: Dict) -> Dict: prompt = self._build_classification_prompt(data) response = await self.model.generate_async( prompt, temperature=0.3, max_tokens=2048, stop_sequences=["<|im_end|>"] ) return self._parse_classification(response) ``` ### 2. **Threat Hunting** Proactive threat detection utilizing advanced behavioral analytics: ```python class AdvancedThreatHunter: """Sophisticated threat hunting framework with ML-enhanced detection""" def __init__(self, model, detection_engines): self.model = model self.detection_engines = detection_engines self.behavioral_baseline = BehavioralBaseline() self.anomaly_detector = AnomalyDetectionEngine() async def hunt_threats(self, environment_data: EnvironmentSnapshot, hunt_hypothesis: Optional[str] = None) -> ThreatHuntingReport: """ Execute comprehensive threat hunting operation """ # Initialize hunting context context = HuntingContext( environment=environment_data, hypothesis=hunt_hypothesis or self._generate_hypothesis(environment_data) ) # Phase 1: Behavioral Analysis behavioral_anomalies = await self._analyze_behaviors(context) # Phase 2: Pattern Recognition threat_patterns = await self._identify_threat_patterns( behavioral_anomalies, context ) # Phase 3: Advanced Correlation correlated_threats = await self._correlate_threats( patterns=threat_patterns, timeline=context.timeline, assets=context.critical_assets ) # Phase 4: Threat Validation validated_threats = await self._validate_threats(correlated_threats) # Phase 5: Attribution Analysis attribution = await self._perform_attribution(validated_threats) return ThreatHuntingReport( hypothesis=context.hypothesis, discovered_threats=validated_threats, attribution=attribution, recommendations=await self._generate_hunt_recommendations(), future_hunt_suggestions=self._suggest_future_hunts(validated_threats) ) ``` ### 3. **Code Analysis** Multi-paradigm code security assessment framework: ```python class CodeSecurityAnalyzer: """Comprehensive code analysis engine with deep vulnerability detection""" def __init__(self, model, ruleset_engine): self.model = model self.ruleset_engine = ruleset_engine self.ast_analyzer = ASTSecurityAnalyzer() self.taint_analyzer = TaintAnalysisEngine() self.symbolic_executor = SymbolicExecutionEngine() async def analyze_code(self, code: str, language: str, context: CodeContext) -> SecurityAnalysisReport: """ Perform deep security analysis on provided code """ # Parse and build AST ast = self.ast_analyzer.parse(code, language) # Static Analysis Phase static_vulnerabilities = await self._perform_static_analysis( ast=ast, code=code, language=language ) # Taint Analysis taint_results = await self.taint_analyzer.analyze( ast=ast, entry_points=context.entry_points, sensitive_sinks=context.sensitive_sinks ) # Symbolic Execution symbolic_paths = await self.symbolic_executor.explore( ast=ast, constraints=context.constraints, max_depth=context.max_analysis_depth ) # AI-Enhanced Pattern Recognition ai_detected_issues = await self._ai_pattern_analysis( code=code, static_results=static_vulnerabilities, taint_results=taint_results ) # Generate Remediation Suggestions remediation = await self._generate_remediation( vulnerabilities=static_vulnerabilities + ai_detected_issues, code_context=context ) return SecurityAnalysisReport( vulnerabilities=self._merge_findings( static_vulnerabilities, taint_results.vulnerabilities, symbolic_paths.vulnerabilities, ai_detected_issues ), risk_score=self._calculate_risk_score(all_findings), remediation_suggestions=remediation, secure_code_alternatives=await self._generate_secure_alternatives(code) ) ``` ### 4. **Exploit Development** Ethical exploit engineering for security validation: ```python class EthicalExploitDeveloper: """Advanced exploit development framework for authorized testing""" def __init__(self, model, safety_validator): self.model = model self.safety_validator = safety_validator self.exploit_db = ExploitDatabase() self.payload_generator = PayloadGenerator() async def develop_exploit(self, vulnerability: VulnerabilityDetails, target_config: TargetConfiguration, ethical_context: EthicalContext) -> ExploitPackage: """ Develop exploitation proof-of-concept with safety controls """ # Validate ethical context if not await self.safety_validator.validate_context(ethical_context): raise EthicalViolationError("Unauthorized exploitation attempt") # Analyze vulnerability characteristics vuln_analysis = await self._analyze_vulnerability(vulnerability) # Generate exploitation primitives primitives = await self._generate_primitives( vuln_type=vuln_analysis.classification, target_arch=target_config.architecture, protections=target_config.security_features ) # Develop exploit chain exploit_chain = await self._build_exploit_chain( primitives=primitives, constraints=target_config.constraints, reliability_target=0.95 ) # Generate payloads payloads = await self.payload_generator.generate( exploit_chain=exploit_chain, objectives=ethical_context.test_objectives, avoid_damage=True ) # Validate exploit safety safety_report = await self._validate_exploit_safety( exploit_chain=exploit_chain, payloads=payloads ) return ExploitPackage( exploit_chain=exploit_chain, payloads=payloads, safety_report=safety_report, deployment_guide=await self._generate_deployment_guide(), mitigation_recommendations=await self._generate_mitigations() ) ``` ### 5. **Reverse Engineering** Advanced binary and protocol analysis capabilities: ```python class ReverseEngineeringFramework: """Comprehensive reverse engineering assistant with deep analysis capabilities""" def __init__(self, model, analysis_plugins): self.model = model self.plugins = analysis_plugins self.disassembler = AdvancedDisassembler() self.decompiler = HybridDecompiler() self.protocol_analyzer = ProtocolReverser() async def analyze_binary(self, binary_path: str, analysis_goals: List[str]) -> ReverseEngineeringReport: """ Perform comprehensive binary analysis and reverse engineering """ # Load and parse binary binary = await self._load_binary(binary_path) # Initial reconnaissance recon_data = await self._perform_reconnaissance(binary) # Disassembly and initial analysis disassembly = await self.disassembler.disassemble( binary=binary, architecture=recon_data.architecture, advanced_features=True ) # Control flow reconstruction cfg = await self._reconstruct_control_flow(disassembly) # Decompilation attempts decompiled = await self.decompiler.decompile( disassembly=disassembly, cfg=cfg, optimization_level=3 ) # Identify interesting functions poi_functions = await self._identify_points_of_interest( cfg=cfg, decompiled=decompiled, goals=analysis_goals ) # Deep semantic analysis semantic_analysis = await self._perform_semantic_analysis( functions=poi_functions, context=recon_data ) # Protocol/format identification protocols = await self.protocol_analyzer.identify_protocols( binary=binary, network_traces=recon_data.network_activity ) return ReverseEngineeringReport( binary_info=recon_data, control_flow=cfg, decompiled_code=decompiled, semantic_insights=semantic_analysis, identified_protocols=protocols, security_findings=await self._extract_security_findings(), recommendations=await self._generate_re_recommendations() ) ``` ### 6. **Malware Analysis** Sophisticated malware examination and classification system: ```python class AdvancedMalwareAnalyzer: """State-of-the-art malware analysis framework""" def __init__(self, model, sandbox_cluster): self.model = model self.sandbox_cluster = sandbox_cluster self.static_analyzer = StaticMalwareAnalyzer() self.behavioral_analyzer = BehavioralAnalyzer() self.ml_classifier = MalwareMLClassifier() async def analyze_malware(self, sample: MalwareSample, analysis_depth: str = "comprehensive") -> MalwareAnalysisReport: """ Execute multi-stage malware analysis pipeline """ # Stage 1: Static Analysis static_features = await self.static_analyzer.extract_features( sample=sample, extract_strings=True, analyze_resources=True, identify_packers=True ) # Stage 2: Dynamic Analysis Setup sandbox_config = self._configure_sandbox( sample_type=static_features.file_type, evasion_potential=static_features.evasion_score ) # Stage 3: Behavioral Analysis behavioral_data = await self.sandbox_cluster.execute( sample=sample, config=sandbox_config, duration=300, # 5 minutes collect_all=True ) # Stage 4: Advanced Behavioral Processing processed_behavior = await self.behavioral_analyzer.process( raw_data=behavioral_data, identify_evasion=True, extract_c2=True, map_techniques=True ) # Stage 5: ML-based Classification ml_classification = await self.ml_classifier.classify( static_features=static_features, behavioral_features=processed_behavior.features ) # Stage 6: AI-Enhanced Analysis ai_insights = await self._generate_ai_insights( static=static_features, dynamic=processed_behavior, classification=ml_classification ) # Stage 7: Attribution and Threat Intelligence attribution = await self._perform_attribution_analysis( sample_features=static_features, behavior=processed_behavior, ml_results=ml_classification ) return MalwareAnalysisReport( sample_info=sample.metadata, static_analysis=static_features, behavioral_analysis=processed_behavior, classification=ml_classification, ai_insights=ai_insights, attribution=attribution, iocs=self._extract_iocs(static_features, processed_behavior), mitigation_strategies=await self._generate_mitigation_strategies(), yara_rules=await self._generate_yara_rules(static_features, processed_behavior) ) async def _generate_ai_insights(self, static, dynamic, classification): """Generate advanced AI-driven insights""" prompt = f""" <|im_start|>system You are an expert malware analyst. Provide deep insights based on the analysis data. <|im_end|> <|im_start|>user Static Analysis: - File Type: {static.file_type} - Entropy: {static.entropy} - Suspicious Imports: {static.suspicious_imports} Dynamic Analysis: - Network Activity: {dynamic.network_summary} - File Operations: {dynamic.file_operations_summary} - Process Behavior: {dynamic.process_behavior} ML Classification: {classification.family} (confidence: {classification.confidence}) Provide comprehensive insights including: 1. Malware objectives and capabilities 2. Evasion techniques employed 3. Potential impact and risk assessment 4. Links to known threat actors or campaigns <|im_end|> <|im_start|>assistant""" response = await self.model.generate_async( prompt, temperature=0.3, max_tokens=3072 ) return self._parse_ai_insights(response) ``` ## 🛠️ Advanced Model Deployment Architecture ### Distributed Inference Infrastructure ```python class DistributedInferenceCluster: """Enterprise-grade distributed inference system for cybersecurity operations""" def __init__(self, config: ClusterConfig): self.config = config self.load_balancer = AdaptiveLoadBalancer() self.model_shards = self._initialize_model_shards() self.cache_manager = DistributedCacheManager() self.monitoring = MonitoringSystem() async def initialize_cluster(self): """Initialize distributed inference cluster with fault tolerance""" # Setup model sharding across nodes for node_id, node_config in enumerate(self.config.nodes): shard = await self._setup_model_shard( node_id=node_id, node_config=node_config, model_path=self.config.model_path ) self.model_shards[node_id] = shard # Initialize inter-node communication await self._setup_communication_mesh() # Setup distributed caching await self.cache_manager.initialize( nodes=self.config.nodes, cache_size=self.config.cache_size_gb * 1024 # MB ) # Start monitoring await self.monitoring.start( metrics_endpoint=self.config.metrics_endpoint, alert_thresholds=self.config.alert_thresholds ) async def inference(self, request: InferenceRequest, priority: str = "normal") -> InferenceResponse: """Execute inference with intelligent routing and caching""" # Check cache first cache_key = self._generate_cache_key(request) cached_response = await self.cache_manager.get(cache_key) if cached_response and not request.force_regenerate: return cached_response # Route to appropriate shard target_shard = await self.load_balancer.select_shard( request=request, shards=self.model_shards, priority=priority ) # Execute inference with retry logic max_retries = 3 for attempt in range(max_retries): try: response = await target_shard.generate( prompt=request.prompt, **request.generation_params ) # Cache successful response await self.cache_manager.set( key=cache_key, value=response, ttl=self._calculate_ttl(request) ) return response except Exception as e: if attempt == max_retries - 1: raise await self._handle_inference_failure(e, target_shard, attempt) ``` ### Performance Optimization Framework ```python class PerformanceOptimizer: """Advanced performance optimization for cybersecurity LLM deployment""" def __init__(self, model_config: ModelConfig): self.config = model_config self.profiler = InferenceProfiler() self.optimizer = DynamicOptimizer() async def optimize_deployment(self, workload_profile: WorkloadProfile) -> OptimizedConfig: """Generate optimized deployment configuration based on workload analysis""" # Analyze workload characteristics workload_analysis = await self._analyze_workload(workload_profile) # Determine optimal quantization strategy quantization_config = self._optimize_quantization( precision_requirements=workload_analysis.precision_needs, latency_requirements=workload_analysis.latency_sla, memory_constraints=self.config.memory_limit ) # Configure dynamic batching batching_config = self._optimize_batching( request_patterns=workload_analysis.request_patterns, latency_targets=workload_analysis.latency_percentiles ) # Setup KV cache optimization kv_cache_config = self._optimize_kv_cache( context_lengths=workload_analysis.context_distribution, memory_budget=self.config.kv_cache_memory ) # Configure tensor parallelism parallelism_config = self._optimize_parallelism( model_size=self.config.model_size, available_gpus=self.config.gpu_count, interconnect_bandwidth=self.config.interconnect_bandwidth ) return OptimizedConfig( quantization=quantization_config, batching=batching_config, kv_cache=kv_cache_config, parallelism=parallelism_config, estimated_throughput=self._estimate_throughput(all_configs), estimated_latency=self._estimate_latency(all_configs) ) ``` ## 🔐 Security and Ethical Framework ### Multi-Layer Safety Architecture ```python class SafetyFramework: """Comprehensive safety and ethical compliance system""" def __init__(self): self.content_filter = AdvancedContentFilter() self.intent_classifier = IntentClassificationEngine() self.ethical_validator = EthicalComplianceValidator() self.audit_logger = SecurityAuditLogger() async def validate_request(self, request: InferenceRequest, context: SecurityContext) -> ValidationResult: """Multi-stage request validation with comprehensive safety checks""" # Stage 1: Content Filtering content_check = await self.content_filter.analyze( content=request.prompt, sensitivity_level="high" ) if content_check.risk_score > 0.7: await self.audit_logger.log_blocked_request( request=request, reason=content_check.reasons, context=context ) return ValidationResult( allowed=False, reason="Content violates safety guidelines", suggestions=self._generate_safe_alternatives(request) ) # Stage 2: Intent Classification intent = await self.intent_classifier.classify( prompt=request.prompt, context=context.user_history ) # Stage 3: Ethical Validation ethical_check = await self.ethical_validator.validate( intent=intent, requested_capabilities=request.required_capabilities, user_authorization=context.user_auth_level ) if not ethical_check.compliant: return ValidationResult( allowed=False, reason=ethical_check.violation_reason, required_authorization=ethical_check.required_auth_level ) # Stage 4: Capability Matching if not self._validate_capabilities(request, context): return ValidationResult( allowed=False, reason="Insufficient authorization for requested capabilities" ) # Passed all checks await self.audit_logger.log_allowed_request( request=request, validation_scores={ "content": content_check.risk_score, "intent": intent.confidence, "ethical": ethical_check.compliance_score } ) return ValidationResult( allowed=True, safety_adjustments=self._calculate_safety_adjustments( content_check, intent, ethical_check ) ) ``` ### Responsible Disclosure Framework ```python class ResponsibleDisclosureManager: """Manages responsible disclosure workflows for discovered vulnerabilities""" def __init__(self, disclosure_config: DisclosureConfig): self.config = disclosure_config self.vulnerability_db = VulnerabilityDatabase() self.vendor_contacts = VendorContactManager() self.disclosure_tracker = DisclosureTracker() async def handle_vulnerability_discovery(self, vulnerability: DiscoveredVulnerability, discovery_context: DiscoveryContext) -> DisclosureWorkflow: """Orchestrate responsible disclosure process""" # Validate vulnerability validation = await self._validate_vulnerability(vulnerability) if not validation.confirmed: return DisclosureWorkflow(status="invalid", reason=validation.reason) # Check for duplicate existing = await self.vulnerability_db.check_duplicate(vulnerability) if existing: return DisclosureWorkflow( status="duplicate", existing_id=existing.id, existing_status=existing.disclosure_status ) # Create disclosure record disclosure = await self.disclosure_tracker.create_disclosure( vulnerability=vulnerability, severity=validation.severity, affected_vendors=validation.affected_vendors ) # Initiate vendor contact for vendor in validation.affected_vendors: contact_result = await self.vendor_contacts.initiate_contact( vendor=vendor, vulnerability=vulnerability, disclosure_id=disclosure.id ) if contact_result.successful: await self.disclosure_tracker.update_status( disclosure_id=disclosure.id, vendor=vendor, status="vendor_notified", response_deadline=self._calculate_deadline(validation.severity) ) # Setup monitoring await self._setup_disclosure_monitoring(disclosure) return DisclosureWorkflow( status="initiated", disclosure_id=disclosure.id, timeline=self._generate_disclosure_timeline(validation.severity), next_steps=self._determine_next_steps(disclosure) ) ``` ## 📚 Advanced Training Methodology ### Curriculum Learning Pipeline ```python class CurriculumLearningOrchestrator: """Sophisticated curriculum learning system for cybersecurity domain adaptation""" def __init__(self, base_model, training_config): self.base_model = base_model self.config = training_config self.curriculum_scheduler = AdaptiveCurriculumScheduler() self.difficulty_estimator = DifficultyEstimator() self.performance_tracker = PerformanceTracker() async def execute_curriculum_training(self, dataset: CybersecurityDataset) -> TrainedModel: """Execute multi-phase curriculum learning pipeline""" # Phase 1: Fundamental Concepts fundamentals_curriculum = await self._create_fundamentals_curriculum(dataset) model_v1 = await self._train_phase( model=self.base_model, curriculum=fundamentals_curriculum, phase_name="fundamentals", epochs=10 ) # Phase 2: Domain Specialization specialization_curriculum = await self._create_specialization_curriculum( dataset=dataset, model_performance=await self.performance_tracker.evaluate(model_v1) ) model_v2 = await self._train_phase( model=model_v1, curriculum=specialization_curriculum, phase_name="specialization", epochs=15 ) # Phase 3: Advanced Techniques advanced_curriculum = await self._create_advanced_curriculum( dataset=dataset, focus_areas=self._identify_weak_areas(model_v2) ) model_v3 = await self._train_phase( model=model_v2, curriculum=advanced_curriculum, phase_name="advanced", epochs=20 ) # Phase 4: Adversarial Hardening adversarial_curriculum = await self._create_adversarial_curriculum() model_v4 = await self._train_adversarial( model=model_v3, curriculum=adversarial_curriculum, epochs=10 ) # Phase 5: Safety Alignment safety_curriculum = await self._create_safety_curriculum() final_model = await self._train_safety_alignment( model=model_v4, curriculum=safety_curriculum, epochs=5 ) return final_model ``` ### Data Augmentation Pipeline ```python class CybersecurityDataAugmenter: """Advanced data augmentation for cybersecurity training data""" def __init__(self, augmentation_config): self.config = augmentation_config self.code_mutator = CodeMutationEngine() self.vulnerability_synthesizer = VulnerabilitySynthesizer() self.attack_generator = AttackScenarioGenerator() async def augment_dataset(self, original_dataset: Dataset, augmentation_factor: float = 2.0) -> AugmentedDataset: """Generate augmented cybersecurity training data""" augmented_samples = [] for sample in original_dataset: # Original sample augmented_samples.append(sample) # Type-specific augmentation if sample.type == "vulnerable_code": mutations = await self.code_mutator.generate_mutations( code=sample.content, language=sample.language, preserve_vulnerability=True, num_mutations=int(augmentation_factor) ) augmented_samples.extend(mutations) elif sample.type == "exploit": variations = await self._generate_exploit_variations( exploit=sample.content, target_diversity=augmentation_factor ) augmented_samples.extend(variations) elif sample.type == "malware": variants = await self._generate_malware_variants( malware=sample.content, behavioral_preservation=0.8 ) augmented_samples.extend(variants) elif sample.type == "incident_report": scenarios = await self.attack_generator.generate_scenarios( base_incident=sample.content, complexity_levels=["low", "medium", "high"], num_scenarios=int(augmentation_factor) ) augmented_samples.extend(scenarios) # Synthetic data generation synthetic_samples = await self._generate_synthetic_samples( num_samples=int(len(original_dataset) * 0.3), sample_distribution=self._analyze_distribution(original_dataset) ) augmented_samples.extend(synthetic_samples) return AugmentedDataset( samples=augmented_samples, augmentation_metadata=self._generate_metadata( original_size=len(original_dataset), augmented_size=len(augmented_samples) ) ) ``` ## 🤝 Community Contribution Guidelines ### Contributing to Trendyol Cybersecurity LLM We welcome contributions from the global cybersecurity community. Our contribution framework ensures high-quality, security-focused enhancements: ```python class ContributionValidator: """Automated contribution validation system""" def __init__(self): self.security_scanner = SecurityScanner() self.quality_analyzer = QualityAnalyzer() self.compliance_checker = ComplianceChecker() async def validate_contribution(self, contribution: Contribution) -> ValidationReport: """Comprehensive contribution validation pipeline""" # Security scanning security_results = await self.security_scanner.scan( code=contribution.code_changes, configs=contribution.config_changes, deep_scan=True ) # Quality analysis quality_results = await self.quality_analyzer.analyze( contribution=contribution, metrics=["complexity", "maintainability", "test_coverage"] ) # Compliance checking compliance_results = await self.compliance_checker.check( contribution=contribution, policies=["security_policy", "code_standards", "documentation"] ) return ValidationReport( security=security_results, quality=quality_results, compliance=compliance_results, overall_status=self._determine_status(all_results), recommendations=self._generate_recommendations(all_results) ) ``` ### Research Collaboration Framework For academic and research collaborations, please refer to our research guidelines and dataset access protocols. We maintain partnerships with leading cybersecurity research institutions and welcome new collaborative opportunities. ## 📄 License and Citation This model is released under the Apache 2.0 License with additional ethical use provisions specific to cybersecurity applications. ``` ---

🛡️ Developed with Passion by Trendyol Security Team 🛡️

Empowering the cybersecurity community with advanced AI capabilities

Together, we build a more secure digital future