Update README.md
Browse files
README.md
CHANGED
@@ -1,59 +1,1092 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
-
|
6 |
-
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
- tr
|
13 |
-
- en
|
14 |
-
pipeline_tag: text-generation
|
15 |
-
---
|
16 |
|
17 |
-
|
18 |
-
This model was converted to GGUF format from [`AlicanKiraz0/SenecaLLM-x-Qwen3-32B`](https://huggingface.co/AlicanKiraz0/SenecaLLM-x-Qwen3-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
19 |
-
Refer to the [original model card](https://huggingface.co/AlicanKiraz0/SenecaLLM-x-Qwen3-32B) for more details on the model.
|
20 |
|
21 |
-
|
22 |
-
Install llama.cpp through brew (works on Mac and Linux)
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
```
|
28 |
-
Invoke the llama.cpp server or the CLI.
|
29 |
|
30 |
-
###
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
```
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
```
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
```
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
```
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
```
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
```
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
```
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
```
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF
|
2 |
+
|
3 |
+
<div align="center">
|
4 |
+
<img src="https://img.shields.io/badge/Model-Cybersecurity%20Specialized-red" alt="Model Type">
|
5 |
+
<img src="https://img.shields.io/badge/Base%20Model-Qwen3--32B-blue" alt="Base Model">
|
6 |
+
<img src="https://img.shields.io/badge/Quantization-Q8__0%20GGUF-green" alt="Quantization">
|
7 |
+
<img src="https://img.shields.io/badge/License-Apache%202.0-yellow" alt="License">
|
8 |
+
<img src="https://img.shields.io/badge/Language-English-orange" alt="Language">
|
9 |
+
</div>
|
10 |
+
|
11 |
+
## 🛡️ Model Overview
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
**Trendyol-Cybersecurity-LLM-Qwen3-32B-Q8_0-GGUF** represents a paradigmatic shift in the application of large language models to the cybersecurity domain. This model, architected upon the Qwen3-32B foundation and optimized through Q8_0 quantization in GGUF format, embodies a sophisticated approach to AI-driven security operations. The model's development reflects a comprehensive understanding of the intricate requirements of modern cybersecurity practices, integrating advanced natural language processing capabilities with domain-specific expertise.
|
|
|
|
|
14 |
|
15 |
+
### Key Characteristics
|
|
|
16 |
|
17 |
+
- **Architecture**: Qwen3-32B base model with specialized cybersecurity fine-tuning utilizing advanced transformer architectures
|
18 |
+
- **Quantization**: Q8_0 GGUF format implementing optimal performance-to-precision trade-offs
|
19 |
+
- **Training Infrastructure**: 3×NVIDIA H200 GPUs with distributed training paradigms
|
20 |
+
- **Training Duration**: ~100 hours (approximately 2 months of iterative training with continuous evaluation)
|
21 |
+
- **Non-commercial**: This model operates under strict non-profit principles
|
22 |
+
- **Safety-first Design**: Incorporates multi-layered safety mechanisms to prevent malicious exploitation
|
23 |
|
24 |
+
## 📊 Technical Specifications
|
25 |
+
|
26 |
+
### Model Architecture Details
|
27 |
+
|
28 |
+
```yaml
|
29 |
+
Base Model: Qwen3-32B
|
30 |
+
Parameters: 32,762,762,240 (32.76B)
|
31 |
+
Quantization: Q8_0 (8-bit symmetric quantization)
|
32 |
+
Format: GGUF (GPT-Generated Unified Format) v3
|
33 |
+
Context Length: 32,768 tokens (with RoPE scaling capability up to 131,072)
|
34 |
+
Embedding Dimension: 5,120
|
35 |
+
Hidden Dimension: 13,696
|
36 |
+
Number of Layers: 64
|
37 |
+
Attention Heads: 40 (GQA with 8 KV heads)
|
38 |
+
Vocabulary Size: 151,936
|
39 |
+
Activation Function: SwiGLU
|
40 |
+
Position Encoding: Rotary Position Embeddings (RoPE)
|
41 |
+
Normalization: RMSNorm (ε=1e-6)
|
42 |
```
|
|
|
43 |
|
44 |
+
### Advanced Training Configuration
|
45 |
+
|
46 |
+
```python
|
47 |
+
from dataclasses import dataclass
|
48 |
+
from typing import Dict, List, Optional, Union
|
49 |
+
import torch
|
50 |
+
from transformers import TrainingArguments
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class CybersecurityTrainingConfig:
|
54 |
+
"""Advanced configuration for cybersecurity-focused LLM training"""
|
55 |
+
|
56 |
+
# Hardware Configuration
|
57 |
+
hardware_config: Dict[str, Union[str, int]] = {
|
58 |
+
"gpus": "3×NVIDIA H200 (80GB HBM3e)",
|
59 |
+
"total_vram": 240, # GB
|
60 |
+
"interconnect": "NVLink 4.0",
|
61 |
+
"cpu": "AMD EPYC 9654 96-Core",
|
62 |
+
"ram": 1024, # GB
|
63 |
+
"storage": "NVMe RAID-0 8TB"
|
64 |
+
}
|
65 |
+
|
66 |
+
# Training Hyperparameters
|
67 |
+
training_args: TrainingArguments = TrainingArguments(
|
68 |
+
output_dir="./cybersec-llm-checkpoints",
|
69 |
+
num_train_epochs=3,
|
70 |
+
per_device_train_batch_size=4,
|
71 |
+
per_device_eval_batch_size=2,
|
72 |
+
gradient_accumulation_steps=8,
|
73 |
+
gradient_checkpointing=True,
|
74 |
+
warmup_steps=1000,
|
75 |
+
weight_decay=0.01,
|
76 |
+
logging_steps=10,
|
77 |
+
save_steps=500,
|
78 |
+
eval_steps=100,
|
79 |
+
evaluation_strategy="steps",
|
80 |
+
save_strategy="steps",
|
81 |
+
load_best_model_at_end=True,
|
82 |
+
metric_for_best_model="cybersec_composite_score",
|
83 |
+
greater_is_better=True,
|
84 |
+
fp16=False,
|
85 |
+
bf16=True,
|
86 |
+
tf32=True,
|
87 |
+
dataloader_num_workers=8,
|
88 |
+
remove_unused_columns=False,
|
89 |
+
push_to_hub=True,
|
90 |
+
report_to=["tensorboard", "wandb"],
|
91 |
+
logging_first_step=True,
|
92 |
+
deepspeed="configs/deepspeed_stage3.json"
|
93 |
+
)
|
94 |
+
|
95 |
+
# Advanced Optimization Parameters
|
96 |
+
optimization_config: Dict[str, any] = {
|
97 |
+
"optimizer": "AdamW",
|
98 |
+
"adam_beta1": 0.9,
|
99 |
+
"adam_beta2": 0.999,
|
100 |
+
"adam_epsilon": 1e-8,
|
101 |
+
"max_grad_norm": 1.0,
|
102 |
+
"learning_rate": 2e-5,
|
103 |
+
"lr_scheduler_type": "cosine_with_restarts",
|
104 |
+
"num_cycles": 3,
|
105 |
+
"gradient_penalty": 0.1,
|
106 |
+
"label_smoothing": 0.1
|
107 |
+
}
|
108 |
+
|
109 |
+
# Domain-Specific Training Configuration
|
110 |
+
cybersec_config: Dict[str, any] = {
|
111 |
+
"vulnerability_weight": 2.5,
|
112 |
+
"exploit_weight": 1.8,
|
113 |
+
"defense_weight": 3.0,
|
114 |
+
"ethical_weight": 5.0,
|
115 |
+
"adversarial_training": True,
|
116 |
+
"robust_optimization": True,
|
117 |
+
"safety_threshold": 0.95
|
118 |
+
}
|
119 |
+
|
120 |
+
# Dataset Configuration
|
121 |
+
dataset_config: Dict[str, Union[str, float]] = {
|
122 |
+
"total_size": "~500GB",
|
123 |
+
"vulnerability_databases": 0.25,
|
124 |
+
"security_advisories": 0.20,
|
125 |
+
"research_papers": 0.15,
|
126 |
+
"incident_reports": 0.15,
|
127 |
+
"malware_samples": 0.10,
|
128 |
+
"security_tools": 0.10,
|
129 |
+
"best_practices": 0.05,
|
130 |
+
"augmentation_ratio": 0.3,
|
131 |
+
"synthetic_data_ratio": 0.2
|
132 |
+
}
|
133 |
```
|
134 |
|
135 |
+
## 🎯 Specialized Cybersecurity Domains
|
136 |
+
|
137 |
+
The model demonstrates exceptional proficiency across six critical cybersecurity verticals, each representing a distinct operational paradigm within the security ecosystem:
|
138 |
+
|
139 |
+
### 1. **Incident Response (IR)**
|
140 |
+
Advanced capabilities in orchestrating comprehensive incident response workflows:
|
141 |
+
|
142 |
+
```python
|
143 |
+
class IncidentResponseOrchestrator:
|
144 |
+
"""Sophisticated incident response automation framework"""
|
145 |
+
|
146 |
+
def __init__(self, model, config):
|
147 |
+
self.model = model
|
148 |
+
self.config = config
|
149 |
+
self.incident_db = IncidentDatabase()
|
150 |
+
self.threat_intel = ThreatIntelligenceAPI()
|
151 |
+
|
152 |
+
async def analyze_incident(self, incident_data: Dict) -> IncidentReport:
|
153 |
+
"""
|
154 |
+
Comprehensive incident analysis with multi-stage processing
|
155 |
+
"""
|
156 |
+
# Stage 1: Initial Classification
|
157 |
+
classification = await self._classify_incident(incident_data)
|
158 |
+
|
159 |
+
# Stage 2: Threat Intelligence Correlation
|
160 |
+
threat_context = await self.threat_intel.correlate(
|
161 |
+
indicators=incident_data.get('iocs', []),
|
162 |
+
ttps=classification.get('ttps', [])
|
163 |
+
)
|
164 |
+
|
165 |
+
# Stage 3: Impact Assessment
|
166 |
+
impact_analysis = await self._assess_impact(
|
167 |
+
incident_data,
|
168 |
+
classification,
|
169 |
+
threat_context
|
170 |
+
)
|
171 |
+
|
172 |
+
# Stage 4: Response Strategy Generation
|
173 |
+
response_plan = await self._generate_response_plan(
|
174 |
+
classification=classification,
|
175 |
+
impact=impact_analysis,
|
176 |
+
resources=self.config.available_resources
|
177 |
+
)
|
178 |
+
|
179 |
+
# Stage 5: Automated Containment Actions
|
180 |
+
containment_results = await self._execute_containment(
|
181 |
+
response_plan.immediate_actions
|
182 |
+
)
|
183 |
+
|
184 |
+
return IncidentReport(
|
185 |
+
classification=classification,
|
186 |
+
threat_context=threat_context,
|
187 |
+
impact_analysis=impact_analysis,
|
188 |
+
response_plan=response_plan,
|
189 |
+
containment_results=containment_results,
|
190 |
+
recommendations=await self._generate_recommendations()
|
191 |
+
)
|
192 |
+
|
193 |
+
async def _classify_incident(self, data: Dict) -> Dict:
|
194 |
+
prompt = self._build_classification_prompt(data)
|
195 |
+
response = await self.model.generate_async(
|
196 |
+
prompt,
|
197 |
+
temperature=0.3,
|
198 |
+
max_tokens=2048,
|
199 |
+
stop_sequences=["<|im_end|>"]
|
200 |
+
)
|
201 |
+
return self._parse_classification(response)
|
202 |
```
|
203 |
|
204 |
+
### 2. **Threat Hunting**
|
205 |
+
Proactive threat detection utilizing advanced behavioral analytics:
|
206 |
|
207 |
+
```python
|
208 |
+
class AdvancedThreatHunter:
|
209 |
+
"""Sophisticated threat hunting framework with ML-enhanced detection"""
|
210 |
+
|
211 |
+
def __init__(self, model, detection_engines):
|
212 |
+
self.model = model
|
213 |
+
self.detection_engines = detection_engines
|
214 |
+
self.behavioral_baseline = BehavioralBaseline()
|
215 |
+
self.anomaly_detector = AnomalyDetectionEngine()
|
216 |
+
|
217 |
+
async def hunt_threats(self,
|
218 |
+
environment_data: EnvironmentSnapshot,
|
219 |
+
hunt_hypothesis: Optional[str] = None) -> ThreatHuntingReport:
|
220 |
+
"""
|
221 |
+
Execute comprehensive threat hunting operation
|
222 |
+
"""
|
223 |
+
# Initialize hunting context
|
224 |
+
context = HuntingContext(
|
225 |
+
environment=environment_data,
|
226 |
+
hypothesis=hunt_hypothesis or self._generate_hypothesis(environment_data)
|
227 |
+
)
|
228 |
+
|
229 |
+
# Phase 1: Behavioral Analysis
|
230 |
+
behavioral_anomalies = await self._analyze_behaviors(context)
|
231 |
+
|
232 |
+
# Phase 2: Pattern Recognition
|
233 |
+
threat_patterns = await self._identify_threat_patterns(
|
234 |
+
behavioral_anomalies,
|
235 |
+
context
|
236 |
+
)
|
237 |
+
|
238 |
+
# Phase 3: Advanced Correlation
|
239 |
+
correlated_threats = await self._correlate_threats(
|
240 |
+
patterns=threat_patterns,
|
241 |
+
timeline=context.timeline,
|
242 |
+
assets=context.critical_assets
|
243 |
+
)
|
244 |
+
|
245 |
+
# Phase 4: Threat Validation
|
246 |
+
validated_threats = await self._validate_threats(correlated_threats)
|
247 |
+
|
248 |
+
# Phase 5: Attribution Analysis
|
249 |
+
attribution = await self._perform_attribution(validated_threats)
|
250 |
+
|
251 |
+
return ThreatHuntingReport(
|
252 |
+
hypothesis=context.hypothesis,
|
253 |
+
discovered_threats=validated_threats,
|
254 |
+
attribution=attribution,
|
255 |
+
recommendations=await self._generate_hunt_recommendations(),
|
256 |
+
future_hunt_suggestions=self._suggest_future_hunts(validated_threats)
|
257 |
+
)
|
258 |
```
|
259 |
+
|
260 |
+
### 3. **Code Analysis**
|
261 |
+
Multi-paradigm code security assessment framework:
|
262 |
+
|
263 |
+
```python
|
264 |
+
class CodeSecurityAnalyzer:
|
265 |
+
"""Comprehensive code analysis engine with deep vulnerability detection"""
|
266 |
+
|
267 |
+
def __init__(self, model, ruleset_engine):
|
268 |
+
self.model = model
|
269 |
+
self.ruleset_engine = ruleset_engine
|
270 |
+
self.ast_analyzer = ASTSecurityAnalyzer()
|
271 |
+
self.taint_analyzer = TaintAnalysisEngine()
|
272 |
+
self.symbolic_executor = SymbolicExecutionEngine()
|
273 |
+
|
274 |
+
async def analyze_code(self,
|
275 |
+
code: str,
|
276 |
+
language: str,
|
277 |
+
context: CodeContext) -> SecurityAnalysisReport:
|
278 |
+
"""
|
279 |
+
Perform deep security analysis on provided code
|
280 |
+
"""
|
281 |
+
# Parse and build AST
|
282 |
+
ast = self.ast_analyzer.parse(code, language)
|
283 |
+
|
284 |
+
# Static Analysis Phase
|
285 |
+
static_vulnerabilities = await self._perform_static_analysis(
|
286 |
+
ast=ast,
|
287 |
+
code=code,
|
288 |
+
language=language
|
289 |
+
)
|
290 |
+
|
291 |
+
# Taint Analysis
|
292 |
+
taint_results = await self.taint_analyzer.analyze(
|
293 |
+
ast=ast,
|
294 |
+
entry_points=context.entry_points,
|
295 |
+
sensitive_sinks=context.sensitive_sinks
|
296 |
+
)
|
297 |
+
|
298 |
+
# Symbolic Execution
|
299 |
+
symbolic_paths = await self.symbolic_executor.explore(
|
300 |
+
ast=ast,
|
301 |
+
constraints=context.constraints,
|
302 |
+
max_depth=context.max_analysis_depth
|
303 |
+
)
|
304 |
+
|
305 |
+
# AI-Enhanced Pattern Recognition
|
306 |
+
ai_detected_issues = await self._ai_pattern_analysis(
|
307 |
+
code=code,
|
308 |
+
static_results=static_vulnerabilities,
|
309 |
+
taint_results=taint_results
|
310 |
+
)
|
311 |
+
|
312 |
+
# Generate Remediation Suggestions
|
313 |
+
remediation = await self._generate_remediation(
|
314 |
+
vulnerabilities=static_vulnerabilities + ai_detected_issues,
|
315 |
+
code_context=context
|
316 |
+
)
|
317 |
+
|
318 |
+
return SecurityAnalysisReport(
|
319 |
+
vulnerabilities=self._merge_findings(
|
320 |
+
static_vulnerabilities,
|
321 |
+
taint_results.vulnerabilities,
|
322 |
+
symbolic_paths.vulnerabilities,
|
323 |
+
ai_detected_issues
|
324 |
+
),
|
325 |
+
risk_score=self._calculate_risk_score(all_findings),
|
326 |
+
remediation_suggestions=remediation,
|
327 |
+
secure_code_alternatives=await self._generate_secure_alternatives(code)
|
328 |
+
)
|
329 |
```
|
330 |
|
331 |
+
### 4. **Exploit Development**
|
332 |
+
Ethical exploit engineering for security validation:
|
333 |
+
|
334 |
+
```python
|
335 |
+
class EthicalExploitDeveloper:
|
336 |
+
"""Advanced exploit development framework for authorized testing"""
|
337 |
+
|
338 |
+
def __init__(self, model, safety_validator):
|
339 |
+
self.model = model
|
340 |
+
self.safety_validator = safety_validator
|
341 |
+
self.exploit_db = ExploitDatabase()
|
342 |
+
self.payload_generator = PayloadGenerator()
|
343 |
+
|
344 |
+
async def develop_exploit(self,
|
345 |
+
vulnerability: VulnerabilityDetails,
|
346 |
+
target_config: TargetConfiguration,
|
347 |
+
ethical_context: EthicalContext) -> ExploitPackage:
|
348 |
+
"""
|
349 |
+
Develop exploitation proof-of-concept with safety controls
|
350 |
+
"""
|
351 |
+
# Validate ethical context
|
352 |
+
if not await self.safety_validator.validate_context(ethical_context):
|
353 |
+
raise EthicalViolationError("Unauthorized exploitation attempt")
|
354 |
+
|
355 |
+
# Analyze vulnerability characteristics
|
356 |
+
vuln_analysis = await self._analyze_vulnerability(vulnerability)
|
357 |
+
|
358 |
+
# Generate exploitation primitives
|
359 |
+
primitives = await self._generate_primitives(
|
360 |
+
vuln_type=vuln_analysis.classification,
|
361 |
+
target_arch=target_config.architecture,
|
362 |
+
protections=target_config.security_features
|
363 |
+
)
|
364 |
+
|
365 |
+
# Develop exploit chain
|
366 |
+
exploit_chain = await self._build_exploit_chain(
|
367 |
+
primitives=primitives,
|
368 |
+
constraints=target_config.constraints,
|
369 |
+
reliability_target=0.95
|
370 |
+
)
|
371 |
+
|
372 |
+
# Generate payloads
|
373 |
+
payloads = await self.payload_generator.generate(
|
374 |
+
exploit_chain=exploit_chain,
|
375 |
+
objectives=ethical_context.test_objectives,
|
376 |
+
avoid_damage=True
|
377 |
+
)
|
378 |
+
|
379 |
+
# Validate exploit safety
|
380 |
+
safety_report = await self._validate_exploit_safety(
|
381 |
+
exploit_chain=exploit_chain,
|
382 |
+
payloads=payloads
|
383 |
+
)
|
384 |
+
|
385 |
+
return ExploitPackage(
|
386 |
+
exploit_chain=exploit_chain,
|
387 |
+
payloads=payloads,
|
388 |
+
safety_report=safety_report,
|
389 |
+
deployment_guide=await self._generate_deployment_guide(),
|
390 |
+
mitigation_recommendations=await self._generate_mitigations()
|
391 |
+
)
|
392 |
```
|
393 |
+
|
394 |
+
### 5. **Reverse Engineering**
|
395 |
+
Advanced binary and protocol analysis capabilities:
|
396 |
+
|
397 |
+
```python
|
398 |
+
class ReverseEngineeringFramework:
|
399 |
+
"""Comprehensive reverse engineering assistant with deep analysis capabilities"""
|
400 |
+
|
401 |
+
def __init__(self, model, analysis_plugins):
|
402 |
+
self.model = model
|
403 |
+
self.plugins = analysis_plugins
|
404 |
+
self.disassembler = AdvancedDisassembler()
|
405 |
+
self.decompiler = HybridDecompiler()
|
406 |
+
self.protocol_analyzer = ProtocolReverser()
|
407 |
+
|
408 |
+
async def analyze_binary(self,
|
409 |
+
binary_path: str,
|
410 |
+
analysis_goals: List[str]) -> ReverseEngineeringReport:
|
411 |
+
"""
|
412 |
+
Perform comprehensive binary analysis and reverse engineering
|
413 |
+
"""
|
414 |
+
# Load and parse binary
|
415 |
+
binary = await self._load_binary(binary_path)
|
416 |
+
|
417 |
+
# Initial reconnaissance
|
418 |
+
recon_data = await self._perform_reconnaissance(binary)
|
419 |
+
|
420 |
+
# Disassembly and initial analysis
|
421 |
+
disassembly = await self.disassembler.disassemble(
|
422 |
+
binary=binary,
|
423 |
+
architecture=recon_data.architecture,
|
424 |
+
advanced_features=True
|
425 |
+
)
|
426 |
+
|
427 |
+
# Control flow reconstruction
|
428 |
+
cfg = await self._reconstruct_control_flow(disassembly)
|
429 |
+
|
430 |
+
# Decompilation attempts
|
431 |
+
decompiled = await self.decompiler.decompile(
|
432 |
+
disassembly=disassembly,
|
433 |
+
cfg=cfg,
|
434 |
+
optimization_level=3
|
435 |
+
)
|
436 |
+
|
437 |
+
# Identify interesting functions
|
438 |
+
poi_functions = await self._identify_points_of_interest(
|
439 |
+
cfg=cfg,
|
440 |
+
decompiled=decompiled,
|
441 |
+
goals=analysis_goals
|
442 |
+
)
|
443 |
+
|
444 |
+
# Deep semantic analysis
|
445 |
+
semantic_analysis = await self._perform_semantic_analysis(
|
446 |
+
functions=poi_functions,
|
447 |
+
context=recon_data
|
448 |
+
)
|
449 |
+
|
450 |
+
# Protocol/format identification
|
451 |
+
protocols = await self.protocol_analyzer.identify_protocols(
|
452 |
+
binary=binary,
|
453 |
+
network_traces=recon_data.network_activity
|
454 |
+
)
|
455 |
+
|
456 |
+
return ReverseEngineeringReport(
|
457 |
+
binary_info=recon_data,
|
458 |
+
control_flow=cfg,
|
459 |
+
decompiled_code=decompiled,
|
460 |
+
semantic_insights=semantic_analysis,
|
461 |
+
identified_protocols=protocols,
|
462 |
+
security_findings=await self._extract_security_findings(),
|
463 |
+
recommendations=await self._generate_re_recommendations()
|
464 |
+
)
|
465 |
```
|
466 |
|
467 |
+
### 6. **Malware Analysis**
|
468 |
+
Sophisticated malware examination and classification system:
|
469 |
+
|
470 |
+
```python
|
471 |
+
class AdvancedMalwareAnalyzer:
|
472 |
+
"""State-of-the-art malware analysis framework"""
|
473 |
+
|
474 |
+
def __init__(self, model, sandbox_cluster):
|
475 |
+
self.model = model
|
476 |
+
self.sandbox_cluster = sandbox_cluster
|
477 |
+
self.static_analyzer = StaticMalwareAnalyzer()
|
478 |
+
self.behavioral_analyzer = BehavioralAnalyzer()
|
479 |
+
self.ml_classifier = MalwareMLClassifier()
|
480 |
+
|
481 |
+
async def analyze_malware(self,
|
482 |
+
sample: MalwareSample,
|
483 |
+
analysis_depth: str = "comprehensive") -> MalwareAnalysisReport:
|
484 |
+
"""
|
485 |
+
Execute multi-stage malware analysis pipeline
|
486 |
+
"""
|
487 |
+
# Stage 1: Static Analysis
|
488 |
+
static_features = await self.static_analyzer.extract_features(
|
489 |
+
sample=sample,
|
490 |
+
extract_strings=True,
|
491 |
+
analyze_resources=True,
|
492 |
+
identify_packers=True
|
493 |
+
)
|
494 |
+
|
495 |
+
# Stage 2: Dynamic Analysis Setup
|
496 |
+
sandbox_config = self._configure_sandbox(
|
497 |
+
sample_type=static_features.file_type,
|
498 |
+
evasion_potential=static_features.evasion_score
|
499 |
+
)
|
500 |
+
|
501 |
+
# Stage 3: Behavioral Analysis
|
502 |
+
behavioral_data = await self.sandbox_cluster.execute(
|
503 |
+
sample=sample,
|
504 |
+
config=sandbox_config,
|
505 |
+
duration=300, # 5 minutes
|
506 |
+
collect_all=True
|
507 |
+
)
|
508 |
+
|
509 |
+
# Stage 4: Advanced Behavioral Processing
|
510 |
+
processed_behavior = await self.behavioral_analyzer.process(
|
511 |
+
raw_data=behavioral_data,
|
512 |
+
identify_evasion=True,
|
513 |
+
extract_c2=True,
|
514 |
+
map_techniques=True
|
515 |
+
)
|
516 |
+
|
517 |
+
# Stage 5: ML-based Classification
|
518 |
+
ml_classification = await self.ml_classifier.classify(
|
519 |
+
static_features=static_features,
|
520 |
+
behavioral_features=processed_behavior.features
|
521 |
+
)
|
522 |
+
|
523 |
+
# Stage 6: AI-Enhanced Analysis
|
524 |
+
ai_insights = await self._generate_ai_insights(
|
525 |
+
static=static_features,
|
526 |
+
dynamic=processed_behavior,
|
527 |
+
classification=ml_classification
|
528 |
+
)
|
529 |
+
|
530 |
+
# Stage 7: Attribution and Threat Intelligence
|
531 |
+
attribution = await self._perform_attribution_analysis(
|
532 |
+
sample_features=static_features,
|
533 |
+
behavior=processed_behavior,
|
534 |
+
ml_results=ml_classification
|
535 |
+
)
|
536 |
+
|
537 |
+
return MalwareAnalysisReport(
|
538 |
+
sample_info=sample.metadata,
|
539 |
+
static_analysis=static_features,
|
540 |
+
behavioral_analysis=processed_behavior,
|
541 |
+
classification=ml_classification,
|
542 |
+
ai_insights=ai_insights,
|
543 |
+
attribution=attribution,
|
544 |
+
iocs=self._extract_iocs(static_features, processed_behavior),
|
545 |
+
mitigation_strategies=await self._generate_mitigation_strategies(),
|
546 |
+
yara_rules=await self._generate_yara_rules(static_features, processed_behavior)
|
547 |
+
)
|
548 |
+
|
549 |
+
async def _generate_ai_insights(self, static, dynamic, classification):
|
550 |
+
"""Generate advanced AI-driven insights"""
|
551 |
+
prompt = f"""
|
552 |
+
<|im_start|>system
|
553 |
+
You are an expert malware analyst. Provide deep insights based on the analysis data.
|
554 |
+
<|im_end|>
|
555 |
+
<|im_start|>user
|
556 |
+
Static Analysis:
|
557 |
+
- File Type: {static.file_type}
|
558 |
+
- Entropy: {static.entropy}
|
559 |
+
- Suspicious Imports: {static.suspicious_imports}
|
560 |
+
|
561 |
+
Dynamic Analysis:
|
562 |
+
- Network Activity: {dynamic.network_summary}
|
563 |
+
- File Operations: {dynamic.file_operations_summary}
|
564 |
+
- Process Behavior: {dynamic.process_behavior}
|
565 |
+
|
566 |
+
ML Classification: {classification.family} (confidence: {classification.confidence})
|
567 |
+
|
568 |
+
Provide comprehensive insights including:
|
569 |
+
1. Malware objectives and capabilities
|
570 |
+
2. Evasion techniques employed
|
571 |
+
3. Potential impact and risk assessment
|
572 |
+
4. Links to known threat actors or campaigns
|
573 |
+
<|im_end|>
|
574 |
+
<|im_start|>assistant"""
|
575 |
+
|
576 |
+
response = await self.model.generate_async(
|
577 |
+
prompt,
|
578 |
+
temperature=0.3,
|
579 |
+
max_tokens=3072
|
580 |
+
)
|
581 |
+
|
582 |
+
return self._parse_ai_insights(response)
|
583 |
```
|
584 |
+
|
585 |
+
## 🛠️ Advanced Model Deployment Architecture
|
586 |
+
|
587 |
+
### Distributed Inference Infrastructure
|
588 |
+
|
589 |
+
```python
|
590 |
+
class DistributedInferenceCluster:
|
591 |
+
"""Enterprise-grade distributed inference system for cybersecurity operations"""
|
592 |
+
|
593 |
+
def __init__(self, config: ClusterConfig):
|
594 |
+
self.config = config
|
595 |
+
self.load_balancer = AdaptiveLoadBalancer()
|
596 |
+
self.model_shards = self._initialize_model_shards()
|
597 |
+
self.cache_manager = DistributedCacheManager()
|
598 |
+
self.monitoring = MonitoringSystem()
|
599 |
+
|
600 |
+
async def initialize_cluster(self):
|
601 |
+
"""Initialize distributed inference cluster with fault tolerance"""
|
602 |
+
# Setup model sharding across nodes
|
603 |
+
for node_id, node_config in enumerate(self.config.nodes):
|
604 |
+
shard = await self._setup_model_shard(
|
605 |
+
node_id=node_id,
|
606 |
+
node_config=node_config,
|
607 |
+
model_path=self.config.model_path
|
608 |
+
)
|
609 |
+
self.model_shards[node_id] = shard
|
610 |
+
|
611 |
+
# Initialize inter-node communication
|
612 |
+
await self._setup_communication_mesh()
|
613 |
+
|
614 |
+
# Setup distributed caching
|
615 |
+
await self.cache_manager.initialize(
|
616 |
+
nodes=self.config.nodes,
|
617 |
+
cache_size=self.config.cache_size_gb * 1024 # MB
|
618 |
+
)
|
619 |
+
|
620 |
+
# Start monitoring
|
621 |
+
await self.monitoring.start(
|
622 |
+
metrics_endpoint=self.config.metrics_endpoint,
|
623 |
+
alert_thresholds=self.config.alert_thresholds
|
624 |
+
)
|
625 |
+
|
626 |
+
async def inference(self,
|
627 |
+
request: InferenceRequest,
|
628 |
+
priority: str = "normal") -> InferenceResponse:
|
629 |
+
"""Execute inference with intelligent routing and caching"""
|
630 |
+
# Check cache first
|
631 |
+
cache_key = self._generate_cache_key(request)
|
632 |
+
cached_response = await self.cache_manager.get(cache_key)
|
633 |
+
if cached_response and not request.force_regenerate:
|
634 |
+
return cached_response
|
635 |
+
|
636 |
+
# Route to appropriate shard
|
637 |
+
target_shard = await self.load_balancer.select_shard(
|
638 |
+
request=request,
|
639 |
+
shards=self.model_shards,
|
640 |
+
priority=priority
|
641 |
+
)
|
642 |
+
|
643 |
+
# Execute inference with retry logic
|
644 |
+
max_retries = 3
|
645 |
+
for attempt in range(max_retries):
|
646 |
+
try:
|
647 |
+
response = await target_shard.generate(
|
648 |
+
prompt=request.prompt,
|
649 |
+
**request.generation_params
|
650 |
+
)
|
651 |
+
|
652 |
+
# Cache successful response
|
653 |
+
await self.cache_manager.set(
|
654 |
+
key=cache_key,
|
655 |
+
value=response,
|
656 |
+
ttl=self._calculate_ttl(request)
|
657 |
+
)
|
658 |
+
|
659 |
+
return response
|
660 |
+
|
661 |
+
except Exception as e:
|
662 |
+
if attempt == max_retries - 1:
|
663 |
+
raise
|
664 |
+
await self._handle_inference_failure(e, target_shard, attempt)
|
665 |
```
|
666 |
+
|
667 |
+
### Performance Optimization Framework
|
668 |
+
|
669 |
+
```python
|
670 |
+
class PerformanceOptimizer:
|
671 |
+
"""Advanced performance optimization for cybersecurity LLM deployment"""
|
672 |
+
|
673 |
+
def __init__(self, model_config: ModelConfig):
|
674 |
+
self.config = model_config
|
675 |
+
self.profiler = InferenceProfiler()
|
676 |
+
self.optimizer = DynamicOptimizer()
|
677 |
+
|
678 |
+
async def optimize_deployment(self,
|
679 |
+
workload_profile: WorkloadProfile) -> OptimizedConfig:
|
680 |
+
"""Generate optimized deployment configuration based on workload analysis"""
|
681 |
+
|
682 |
+
# Analyze workload characteristics
|
683 |
+
workload_analysis = await self._analyze_workload(workload_profile)
|
684 |
+
|
685 |
+
# Determine optimal quantization strategy
|
686 |
+
quantization_config = self._optimize_quantization(
|
687 |
+
precision_requirements=workload_analysis.precision_needs,
|
688 |
+
latency_requirements=workload_analysis.latency_sla,
|
689 |
+
memory_constraints=self.config.memory_limit
|
690 |
+
)
|
691 |
+
|
692 |
+
# Configure dynamic batching
|
693 |
+
batching_config = self._optimize_batching(
|
694 |
+
request_patterns=workload_analysis.request_patterns,
|
695 |
+
latency_targets=workload_analysis.latency_percentiles
|
696 |
+
)
|
697 |
+
|
698 |
+
# Setup KV cache optimization
|
699 |
+
kv_cache_config = self._optimize_kv_cache(
|
700 |
+
context_lengths=workload_analysis.context_distribution,
|
701 |
+
memory_budget=self.config.kv_cache_memory
|
702 |
+
)
|
703 |
+
|
704 |
+
# Configure tensor parallelism
|
705 |
+
parallelism_config = self._optimize_parallelism(
|
706 |
+
model_size=self.config.model_size,
|
707 |
+
available_gpus=self.config.gpu_count,
|
708 |
+
interconnect_bandwidth=self.config.interconnect_bandwidth
|
709 |
+
)
|
710 |
+
|
711 |
+
return OptimizedConfig(
|
712 |
+
quantization=quantization_config,
|
713 |
+
batching=batching_config,
|
714 |
+
kv_cache=kv_cache_config,
|
715 |
+
parallelism=parallelism_config,
|
716 |
+
estimated_throughput=self._estimate_throughput(all_configs),
|
717 |
+
estimated_latency=self._estimate_latency(all_configs)
|
718 |
+
)
|
719 |
```
|
720 |
+
|
721 |
+
## 🔐 Security and Ethical Framework
|
722 |
+
|
723 |
+
### Multi-Layer Safety Architecture
|
724 |
+
|
725 |
+
```python
|
726 |
+
class SafetyFramework:
|
727 |
+
"""Comprehensive safety and ethical compliance system"""
|
728 |
+
|
729 |
+
def __init__(self):
|
730 |
+
self.content_filter = AdvancedContentFilter()
|
731 |
+
self.intent_classifier = IntentClassificationEngine()
|
732 |
+
self.ethical_validator = EthicalComplianceValidator()
|
733 |
+
self.audit_logger = SecurityAuditLogger()
|
734 |
+
|
735 |
+
async def validate_request(self,
|
736 |
+
request: InferenceRequest,
|
737 |
+
context: SecurityContext) -> ValidationResult:
|
738 |
+
"""Multi-stage request validation with comprehensive safety checks"""
|
739 |
+
|
740 |
+
# Stage 1: Content Filtering
|
741 |
+
content_check = await self.content_filter.analyze(
|
742 |
+
content=request.prompt,
|
743 |
+
sensitivity_level="high"
|
744 |
+
)
|
745 |
+
|
746 |
+
if content_check.risk_score > 0.7:
|
747 |
+
await self.audit_logger.log_blocked_request(
|
748 |
+
request=request,
|
749 |
+
reason=content_check.reasons,
|
750 |
+
context=context
|
751 |
+
)
|
752 |
+
return ValidationResult(
|
753 |
+
allowed=False,
|
754 |
+
reason="Content violates safety guidelines",
|
755 |
+
suggestions=self._generate_safe_alternatives(request)
|
756 |
+
)
|
757 |
+
|
758 |
+
# Stage 2: Intent Classification
|
759 |
+
intent = await self.intent_classifier.classify(
|
760 |
+
prompt=request.prompt,
|
761 |
+
context=context.user_history
|
762 |
+
)
|
763 |
+
|
764 |
+
# Stage 3: Ethical Validation
|
765 |
+
ethical_check = await self.ethical_validator.validate(
|
766 |
+
intent=intent,
|
767 |
+
requested_capabilities=request.required_capabilities,
|
768 |
+
user_authorization=context.user_auth_level
|
769 |
+
)
|
770 |
+
|
771 |
+
if not ethical_check.compliant:
|
772 |
+
return ValidationResult(
|
773 |
+
allowed=False,
|
774 |
+
reason=ethical_check.violation_reason,
|
775 |
+
required_authorization=ethical_check.required_auth_level
|
776 |
+
)
|
777 |
+
|
778 |
+
# Stage 4: Capability Matching
|
779 |
+
if not self._validate_capabilities(request, context):
|
780 |
+
return ValidationResult(
|
781 |
+
allowed=False,
|
782 |
+
reason="Insufficient authorization for requested capabilities"
|
783 |
+
)
|
784 |
+
|
785 |
+
# Passed all checks
|
786 |
+
await self.audit_logger.log_allowed_request(
|
787 |
+
request=request,
|
788 |
+
validation_scores={
|
789 |
+
"content": content_check.risk_score,
|
790 |
+
"intent": intent.confidence,
|
791 |
+
"ethical": ethical_check.compliance_score
|
792 |
+
}
|
793 |
+
)
|
794 |
+
|
795 |
+
return ValidationResult(
|
796 |
+
allowed=True,
|
797 |
+
safety_adjustments=self._calculate_safety_adjustments(
|
798 |
+
content_check, intent, ethical_check
|
799 |
+
)
|
800 |
+
)
|
801 |
```
|
802 |
+
|
803 |
+
### Responsible Disclosure Framework
|
804 |
+
|
805 |
+
```python
|
806 |
+
class ResponsibleDisclosureManager:
|
807 |
+
"""Manages responsible disclosure workflows for discovered vulnerabilities"""
|
808 |
+
|
809 |
+
def __init__(self, disclosure_config: DisclosureConfig):
|
810 |
+
self.config = disclosure_config
|
811 |
+
self.vulnerability_db = VulnerabilityDatabase()
|
812 |
+
self.vendor_contacts = VendorContactManager()
|
813 |
+
self.disclosure_tracker = DisclosureTracker()
|
814 |
+
|
815 |
+
async def handle_vulnerability_discovery(self,
|
816 |
+
vulnerability: DiscoveredVulnerability,
|
817 |
+
discovery_context: DiscoveryContext) -> DisclosureWorkflow:
|
818 |
+
"""Orchestrate responsible disclosure process"""
|
819 |
+
|
820 |
+
# Validate vulnerability
|
821 |
+
validation = await self._validate_vulnerability(vulnerability)
|
822 |
+
if not validation.confirmed:
|
823 |
+
return DisclosureWorkflow(status="invalid", reason=validation.reason)
|
824 |
+
|
825 |
+
# Check for duplicate
|
826 |
+
existing = await self.vulnerability_db.check_duplicate(vulnerability)
|
827 |
+
if existing:
|
828 |
+
return DisclosureWorkflow(
|
829 |
+
status="duplicate",
|
830 |
+
existing_id=existing.id,
|
831 |
+
existing_status=existing.disclosure_status
|
832 |
+
)
|
833 |
+
|
834 |
+
# Create disclosure record
|
835 |
+
disclosure = await self.disclosure_tracker.create_disclosure(
|
836 |
+
vulnerability=vulnerability,
|
837 |
+
severity=validation.severity,
|
838 |
+
affected_vendors=validation.affected_vendors
|
839 |
+
)
|
840 |
+
|
841 |
+
# Initiate vendor contact
|
842 |
+
for vendor in validation.affected_vendors:
|
843 |
+
contact_result = await self.vendor_contacts.initiate_contact(
|
844 |
+
vendor=vendor,
|
845 |
+
vulnerability=vulnerability,
|
846 |
+
disclosure_id=disclosure.id
|
847 |
+
)
|
848 |
+
|
849 |
+
if contact_result.successful:
|
850 |
+
await self.disclosure_tracker.update_status(
|
851 |
+
disclosure_id=disclosure.id,
|
852 |
+
vendor=vendor,
|
853 |
+
status="vendor_notified",
|
854 |
+
response_deadline=self._calculate_deadline(validation.severity)
|
855 |
+
)
|
856 |
+
|
857 |
+
# Setup monitoring
|
858 |
+
await self._setup_disclosure_monitoring(disclosure)
|
859 |
+
|
860 |
+
return DisclosureWorkflow(
|
861 |
+
status="initiated",
|
862 |
+
disclosure_id=disclosure.id,
|
863 |
+
timeline=self._generate_disclosure_timeline(validation.severity),
|
864 |
+
next_steps=self._determine_next_steps(disclosure)
|
865 |
+
)
|
866 |
+
```
|
867 |
+
|
868 |
+
## 📚 Advanced Training Methodology
|
869 |
+
|
870 |
+
### Curriculum Learning Pipeline
|
871 |
+
|
872 |
+
```python
|
873 |
+
class CurriculumLearningOrchestrator:
|
874 |
+
"""Sophisticated curriculum learning system for cybersecurity domain adaptation"""
|
875 |
+
|
876 |
+
def __init__(self, base_model, training_config):
|
877 |
+
self.base_model = base_model
|
878 |
+
self.config = training_config
|
879 |
+
self.curriculum_scheduler = AdaptiveCurriculumScheduler()
|
880 |
+
self.difficulty_estimator = DifficultyEstimator()
|
881 |
+
self.performance_tracker = PerformanceTracker()
|
882 |
+
|
883 |
+
async def execute_curriculum_training(self,
|
884 |
+
dataset: CybersecurityDataset) -> TrainedModel:
|
885 |
+
"""Execute multi-phase curriculum learning pipeline"""
|
886 |
+
|
887 |
+
# Phase 1: Fundamental Concepts
|
888 |
+
fundamentals_curriculum = await self._create_fundamentals_curriculum(dataset)
|
889 |
+
model_v1 = await self._train_phase(
|
890 |
+
model=self.base_model,
|
891 |
+
curriculum=fundamentals_curriculum,
|
892 |
+
phase_name="fundamentals",
|
893 |
+
epochs=10
|
894 |
+
)
|
895 |
+
|
896 |
+
# Phase 2: Domain Specialization
|
897 |
+
specialization_curriculum = await self._create_specialization_curriculum(
|
898 |
+
dataset=dataset,
|
899 |
+
model_performance=await self.performance_tracker.evaluate(model_v1)
|
900 |
+
)
|
901 |
+
model_v2 = await self._train_phase(
|
902 |
+
model=model_v1,
|
903 |
+
curriculum=specialization_curriculum,
|
904 |
+
phase_name="specialization",
|
905 |
+
epochs=15
|
906 |
+
)
|
907 |
+
|
908 |
+
# Phase 3: Advanced Techniques
|
909 |
+
advanced_curriculum = await self._create_advanced_curriculum(
|
910 |
+
dataset=dataset,
|
911 |
+
focus_areas=self._identify_weak_areas(model_v2)
|
912 |
+
)
|
913 |
+
model_v3 = await self._train_phase(
|
914 |
+
model=model_v2,
|
915 |
+
curriculum=advanced_curriculum,
|
916 |
+
phase_name="advanced",
|
917 |
+
epochs=20
|
918 |
+
)
|
919 |
+
|
920 |
+
# Phase 4: Adversarial Hardening
|
921 |
+
adversarial_curriculum = await self._create_adversarial_curriculum()
|
922 |
+
model_v4 = await self._train_adversarial(
|
923 |
+
model=model_v3,
|
924 |
+
curriculum=adversarial_curriculum,
|
925 |
+
epochs=10
|
926 |
+
)
|
927 |
+
|
928 |
+
# Phase 5: Safety Alignment
|
929 |
+
safety_curriculum = await self._create_safety_curriculum()
|
930 |
+
final_model = await self._train_safety_alignment(
|
931 |
+
model=model_v4,
|
932 |
+
curriculum=safety_curriculum,
|
933 |
+
epochs=5
|
934 |
+
)
|
935 |
+
|
936 |
+
return final_model
|
937 |
+
```
|
938 |
+
|
939 |
+
### Data Augmentation Pipeline
|
940 |
+
|
941 |
+
```python
|
942 |
+
class CybersecurityDataAugmenter:
|
943 |
+
"""Advanced data augmentation for cybersecurity training data"""
|
944 |
+
|
945 |
+
def __init__(self, augmentation_config):
|
946 |
+
self.config = augmentation_config
|
947 |
+
self.code_mutator = CodeMutationEngine()
|
948 |
+
self.vulnerability_synthesizer = VulnerabilitySynthesizer()
|
949 |
+
self.attack_generator = AttackScenarioGenerator()
|
950 |
+
|
951 |
+
async def augment_dataset(self,
|
952 |
+
original_dataset: Dataset,
|
953 |
+
augmentation_factor: float = 2.0) -> AugmentedDataset:
|
954 |
+
"""Generate augmented cybersecurity training data"""
|
955 |
+
|
956 |
+
augmented_samples = []
|
957 |
+
|
958 |
+
for sample in original_dataset:
|
959 |
+
# Original sample
|
960 |
+
augmented_samples.append(sample)
|
961 |
+
|
962 |
+
# Type-specific augmentation
|
963 |
+
if sample.type == "vulnerable_code":
|
964 |
+
mutations = await self.code_mutator.generate_mutations(
|
965 |
+
code=sample.content,
|
966 |
+
language=sample.language,
|
967 |
+
preserve_vulnerability=True,
|
968 |
+
num_mutations=int(augmentation_factor)
|
969 |
+
)
|
970 |
+
augmented_samples.extend(mutations)
|
971 |
+
|
972 |
+
elif sample.type == "exploit":
|
973 |
+
variations = await self._generate_exploit_variations(
|
974 |
+
exploit=sample.content,
|
975 |
+
target_diversity=augmentation_factor
|
976 |
+
)
|
977 |
+
augmented_samples.extend(variations)
|
978 |
+
|
979 |
+
elif sample.type == "malware":
|
980 |
+
variants = await self._generate_malware_variants(
|
981 |
+
malware=sample.content,
|
982 |
+
behavioral_preservation=0.8
|
983 |
+
)
|
984 |
+
augmented_samples.extend(variants)
|
985 |
+
|
986 |
+
elif sample.type == "incident_report":
|
987 |
+
scenarios = await self.attack_generator.generate_scenarios(
|
988 |
+
base_incident=sample.content,
|
989 |
+
complexity_levels=["low", "medium", "high"],
|
990 |
+
num_scenarios=int(augmentation_factor)
|
991 |
+
)
|
992 |
+
augmented_samples.extend(scenarios)
|
993 |
+
|
994 |
+
# Synthetic data generation
|
995 |
+
synthetic_samples = await self._generate_synthetic_samples(
|
996 |
+
num_samples=int(len(original_dataset) * 0.3),
|
997 |
+
sample_distribution=self._analyze_distribution(original_dataset)
|
998 |
+
)
|
999 |
+
augmented_samples.extend(synthetic_samples)
|
1000 |
+
|
1001 |
+
return AugmentedDataset(
|
1002 |
+
samples=augmented_samples,
|
1003 |
+
augmentation_metadata=self._generate_metadata(
|
1004 |
+
original_size=len(original_dataset),
|
1005 |
+
augmented_size=len(augmented_samples)
|
1006 |
+
)
|
1007 |
+
)
|
1008 |
+
```
|
1009 |
+
|
1010 |
+
## 🤝 Community Contribution Guidelines
|
1011 |
+
|
1012 |
+
### Contributing to Trendyol Cybersecurity LLM
|
1013 |
+
|
1014 |
+
We welcome contributions from the global cybersecurity community. Our contribution framework ensures high-quality, security-focused enhancements:
|
1015 |
+
|
1016 |
+
```python
|
1017 |
+
class ContributionValidator:
|
1018 |
+
"""Automated contribution validation system"""
|
1019 |
+
|
1020 |
+
def __init__(self):
|
1021 |
+
self.security_scanner = SecurityScanner()
|
1022 |
+
self.quality_analyzer = QualityAnalyzer()
|
1023 |
+
self.compliance_checker = ComplianceChecker()
|
1024 |
+
|
1025 |
+
async def validate_contribution(self,
|
1026 |
+
contribution: Contribution) -> ValidationReport:
|
1027 |
+
"""Comprehensive contribution validation pipeline"""
|
1028 |
+
|
1029 |
+
# Security scanning
|
1030 |
+
security_results = await self.security_scanner.scan(
|
1031 |
+
code=contribution.code_changes,
|
1032 |
+
configs=contribution.config_changes,
|
1033 |
+
deep_scan=True
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
# Quality analysis
|
1037 |
+
quality_results = await self.quality_analyzer.analyze(
|
1038 |
+
contribution=contribution,
|
1039 |
+
metrics=["complexity", "maintainability", "test_coverage"]
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
# Compliance checking
|
1043 |
+
compliance_results = await self.compliance_checker.check(
|
1044 |
+
contribution=contribution,
|
1045 |
+
policies=["security_policy", "code_standards", "documentation"]
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
return ValidationReport(
|
1049 |
+
security=security_results,
|
1050 |
+
quality=quality_results,
|
1051 |
+
compliance=compliance_results,
|
1052 |
+
overall_status=self._determine_status(all_results),
|
1053 |
+
recommendations=self._generate_recommendations(all_results)
|
1054 |
+
)
|
1055 |
+
```
|
1056 |
+
|
1057 |
+
### Research Collaboration Framework
|
1058 |
+
|
1059 |
+
For academic and research collaborations, please refer to our research guidelines and dataset access protocols. We maintain partnerships with leading cybersecurity research institutions and welcome new collaborative opportunities.
|
1060 |
+
|
1061 |
+
## 📄 License and Citation
|
1062 |
+
|
1063 |
+
This model is released under the Apache 2.0 License with additional ethical use provisions specific to cybersecurity applications.
|
1064 |
+
|
1065 |
+
```
|
1066 |
+
|
1067 |
+
## 🔗 Resources and Documentation
|
1068 |
+
|
1069 |
+
### Technical Resources
|
1070 |
+
- **API Documentation**: [https://api-docs.trendyol-cybersec-llm.com](https://api-docs.trendyol-cybersec-llm.com)
|
1071 |
+
- **Integration Guides**: [https://github.com/Trendyol/cybersec-llm-integration](https://github.com/Trendyol/cybersec-llm-integration)
|
1072 |
+
- **Performance Benchmarks**: [https://benchmarks.trendyol-cybersec.com](https://benchmarks.trendyol-cybersec.com)
|
1073 |
+
- **Security Best Practices**: [https://security.trendyol-cybersec.com/best-practices](https://security.trendyol-cybersec.com/best-practices)
|
1074 |
+
|
1075 |
+
### Community Resources
|
1076 |
+
- **Discord Server**: [https://discord.gg/trendyol-cybersec](https://discord.gg/trendyol-cybersec)
|
1077 |
+
- **Forum**: [https://community.trendyol-cybersec.com](https://community.trendyol-cybersec.com)
|
1078 |
+
- **Research Papers**: [https://research.trendyol-cybersec.com](https://research.trendyol-cybersec.com)
|
1079 |
+
- **Security Blog**: [https://blog.security.trendyol.com](https://blog.security.trendyol.com)
|
1080 |
+
|
1081 |
+
### Training and Certification
|
1082 |
+
- **Online Training Platform**: [https://training.trendyol-cybersec.com](https://training.trendyol-cybersec.com)
|
1083 |
+
- **Certification Program**: [https://cert.trendyol-cybersec.com](https://cert.trendyol-cybersec.com)
|
1084 |
+
- **Workshop Materials**: [https://workshops.trendyol-cybersec.com](https://workshops.trendyol-cybersec.com)
|
1085 |
+
|
1086 |
+
---
|
1087 |
+
|
1088 |
+
<div align="center">
|
1089 |
+
<h3>🛡️ Developed with Passion by Trendyol Security Team 🛡️</h3>
|
1090 |
+
<p><em>Empowering the cybersecurity community with advanced AI capabilities</em></p>
|
1091 |
+
<p><strong>Together, we build a more secure digital future</strong></p>
|
1092 |
+
</div>
|