{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dcfa7142050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcfa71420e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcfa7142170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcfa7142200>", "_build": "<function ActorCriticPolicy._build at 0x7dcfa7142290>", "forward": "<function ActorCriticPolicy.forward at 0x7dcfa7142320>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcfa71423b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcfa7142440>", "_predict": "<function ActorCriticPolicy._predict at 0x7dcfa71424d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcfa7142560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcfa71425f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcfa7142680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dcfa70ea000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717235785316823536, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALqvFj74N5E9GAm0vKItfr4l4ky8gkLzuwAAAAAAAAAADe0OPiocdj45qhq+xlGSvS5ktLwmHfW8AAAAAAAAAACg0Z8+woYVPwa5/b07k4e+Z34tPU7fnDwAAAAAAAAAALNhrj0KZ1W5hXniOhE/zDMon427XToIugAAgD8AAIA/2jKdPRSehLqCWJw1q05JLoz8GbvfhLC0AACAPwAAgD+z7L29exaNukK4S7jA6jKzCSCJuu2gbDcAAIA/AACAP3oUYD4iV5I/3xGHPuRzs76nolw+pV7NPAAAAAAAAAAA5hc7PejPsD6ujuY90J8+vqBeczxAJFg9AAAAAAAAAABW+l6++SuOP3q1Cr/8TsK+eayBvp4UKr4AAAAAAAAAAOC4PD47Prq8Zm28O/8qXbrSxiy+2/gtuwAAgD8AAIA/M6P7OufXJj7QpMA9u8hAvu3J4T2m9Wy9AAAAAAAAAAAAvb89W3eOvCMDzr3xmJk89dUQvgsBdD0AAAAAAACAP3q9N7708os/VUqZvovPo75kFjK+0civPQAAAAAAAAAAAFXuPU+2Zz/mGtk8ezJ4vqnUlT1xt5q9AAAAAAAAAABAQw2+9BS3PpEKRj6S7hi+E/nPPCtTeLoAAAAAAAAAAGYHKT3hTJ66cLJruLq3VrM1RXm3ubWHNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCRSB5HEuSMAWyUTY4BjAF0lEdAlsNJuEVWS3V9lChoBkdAYVZTkyULUmgHTegDaAhHQJbDgjv/io91fZQoaAZHQHHAMMy8BdVoB01fAWgIR0CWw6Zb6guidX2UKGgGR0BhHoYP5HmSaAdN6ANoCEdAlsUMPSUkfXV9lChoBkdAcV6CcPOIImgHTYcBaAhHQJbcntNSIgx1fZQoaAZHQHG/xUipvP1oB02qAmgIR0CW3LWBBiTddX2UKGgGR0Bu4IRIz3yqaAdNGgNoCEdAlt441UEPlXV9lChoBkdAciZMw1zhgmgHTeEDaAhHQJbfnGecx0x1fZQoaAZHQHF3mI9C/oJoB02dAWgIR0CW4jfcer+6dX2UKGgGR0BwfL3BYV7AaAdNLQFoCEdAluJwWrOqvXV9lChoBkdAcKOtJFspHGgHTZYBaAhHQJblBqgyuZF1fZQoaAZHQHDdYuf29L9oB004AWgIR0CW5T6VMVUNdX2UKGgGR0BxDKAJ9iMHaAdN3AFoCEdAluX62KEWZnV9lChoBkdAYBq13t8eCGgHTegDaAhHQJbnjr6ciGF1fZQoaAZHQGYsM1jy4F1oB03oA2gIR0CW6EyyUs4DdX2UKGgGR0BqJ9qveP7vaAdNeANoCEdAlukWVVxS53V9lChoBkdAcYg2GZeAu2gHTSoCaAhHQJbwKAvtdAx1fZQoaAZHQGhUSX+l0o1oB03oA2gIR0CW8G8qFyq/dX2UKGgGR0BHU5/b0voNaAdNEgFoCEdAlvHBlg+hXnV9lChoBkdARjv8uSOinGgHTRUBaAhHQJby3eCTUy51fZQoaAZHQHFo+cx0uDloB03aAWgIR0CW81Pw/gR9dX2UKGgGR0BunWk8A7xNaAdNZwFoCEdAlvXw1Nxlx3V9lChoBkdAbyNyksSTQmgHTcEBaAhHQJb3h5VwPy11fZQoaAZHQG6Shs67ulZoB01sAWgIR0CW++quKXOXdX2UKGgGR0ByeP0/W1+iaAdNzAFoCEdAlwGUv0yxiXV9lChoBkdAcd9JMg2ZRmgHTegCaAhHQJcBp1nuiN91fZQoaAZHQHGfMbrC3w1oB01BA2gIR0CXAzs41gpjdX2UKGgGR0Bs4JyMkyDaaAdNzwJoCEdAlwVWjKxLTXV9lChoBkdAcHbQP7N0NmgHTVwBaAhHQJcF53EAHVx1fZQoaAZHQHE/uS8rZrZoB00bAmgIR0CXBhDwYtQLdX2UKGgGR0BveyUmlZX/aAdNZAFoCEdAlwbE8mrsB3V9lChoBkdAZhEfLcKw6mgHTegDaAhHQJcKs0XP7el1fZQoaAZHQGyIHB+F10VoB033AmgIR0CXCvvA44p+dX2UKGgGR0BjKfzDn/1haAdN6ANoCEdAlyHwX2ugYnV9lChoBkdAbjfLEk0JnmgHTaIBaAhHQJcijVlPJq91fZQoaAZHQHHwSkoF3ZBoB00cAmgIR0CXJMftx+8XdX2UKGgGR0BtZ+mzjWCmaAdNKAJoCEdAlyTw3tKIznV9lChoBkdAbWJc1O0sv2gHTUUCaAhHQJclXhMrVe91fZQoaAZHQGrs/RE4NqhoB02WAWgIR0CXJd37UG3XdX2UKGgGR0BwOVPuXu3MaAdNYQFoCEdAlybe4gA6uHV9lChoBkdAbzesU7CBPWgHTYUBaAhHQJcofPIGQjl1fZQoaAZHQHDuUPYnOSpoB01aAWgIR0CXKTdqcmShdX2UKGgGR0ByiTewcHW0aAdNOwFoCEdAlyvg1BMSK3V9lChoBkdAQGCgCfYjB2gHS81oCEdAly48baRISXV9lChoBkdAclK1nuiN82gHTb8BaAhHQJcuV1gYxcp1fZQoaAZHQGzuQT/Q0GhoB03lAmgIR0CXMOLMLWqcdX2UKGgGR0Bs9kd3jdYXaAdNLgJoCEdAlzSvkFOfunV9lChoBkdAb22Az544ZWgHTSICaAhHQJc6dRMvh611fZQoaAZHQHA6ssxwhntoB00wAWgIR0CXO69JBgNPdX2UKGgGR0Bv+ySxJNCaaAdNiAFoCEdAlzvE7jkuH3V9lChoBkdAcEZVe8f3e2gHTdYBaAhHQJc8oldC3PR1fZQoaAZHwChG8oQWepZoB0v9aAhHQJc+1GFzuF91fZQoaAZHQG8vtutOmBRoB00IAmgIR0CXP7mU4aP0dX2UKGgGR0BwPtXS0BwNaAdN3QFoCEdAl0C/TgEU03V9lChoBkdAcJnF8ohIOGgHTQwCaAhHQJdB+lnAZbZ1fZQoaAZHQHB5/n0TURZoB01rAWgIR0CXQfV/MGHIdX2UKGgGR0BtoUFW4mTlaAdNWwNoCEdAl0V2TC+De3V9lChoBkdAcHiziCJ40WgHTZ0BaAhHQJdIgEvCdjJ1fZQoaAZHQGA88SwnpjdoB03oA2gIR0CXSwrt3OfNdX2UKGgGR0BwzQep4rz5aAdNswFoCEdAl0ykTg2qDXV9lChoBkdAbm6qBmPHUGgHTcQCaAhHQJdNL1f3N9p1fZQoaAZHQG1qCH6/IsBoB010AWgIR0CXTWmQr+YMdX2UKGgGR0Bw5CeGwiaBaAdNmQFoCEdAl0/Ph60IC3V9lChoBkdAcUXmcvugH2gHTZYBaAhHQJdQXBguyu91fZQoaAZHQHJaCkoF3ZBoB03jAWgIR0CXU0YHgP3BdX2UKGgGR0BwIbmHP/rCaAdNowFoCEdAl1PNq1w5vXV9lChoBkdAPAiwnpjc22gHTQQBaAhHQJdVCKxcE/11fZQoaAZHQHD2KcEvCdloB03pAWgIR0CXVjK0UoKEdX2UKGgGR0BrhbdJrcj8aAdN1wFoCEdAl2vXkPtlZ3V9lChoBkdAcg1OFg2If2gHTR8CaAhHQJduuWGATZh1fZQoaAZHQHEjXlwLmZFoB01DAWgIR0CXcDezUqhEdX2UKGgGR0BVciPEKmbcaAdN6ANoCEdAl3ECKFZgX3V9lChoBkdAb3RTrE9+w2gHTY8BaAhHQJdyOcI7eVN1fZQoaAZHQHDcq4+bExZoB02MAWgIR0CXc+nAZbY9dX2UKGgGR0BtXtHjIaLoaAdNWgFoCEdAl3QTKoybhHV9lChoBkdAblZEy+HrQmgHTYsCaAhHQJd0wrmQr+Z1fZQoaAZHQHA62uoxYaJoB01nAWgIR0CXdQMMI/qxdX2UKGgGR0Bs3n+CK77LaAdNsgFoCEdAl3U1+3H7xnV9lChoBkdAZZ3wBHTZx2gHTegDaAhHQJd19Cpm29d1fZQoaAZHQHA9kSdvsJJoB02uAWgIR0CXejPRzBAOdX2UKGgGR0BvcgJmdy1eaAdNjwFoCEdAl3qNahYeT3V9lChoBkdAcOsu2Zy+6GgHTVYBaAhHQJd7FsvZh8Z1fZQoaAZHQHBLqn3ta6loB01GAWgIR0CXfXJul41QdX2UKGgGR0Ap95eqrBCVaAdL9mgIR0CXgGp4bCJodX2UKGgGR0BwuYRbr1M/aAdNmgFoCEdAl4O7iIcin3V9lChoBkdAcqfPYnOSn2gHTVYBaAhHQJeEE+5e7cx1fZQoaAZHQGJnkvTPSlZoB03oA2gIR0CXh8ItUXHjdX2UKGgGR0BxyPGVAzHkaAdNzgFoCEdAl4iE5ZKWcHV9lChoBkdAcG7aOPvKEGgHTW0BaAhHQJeMM/zJ6pp1fZQoaAZHQHD1nmRvFWJoB00QAmgIR0CXjUJswco6dX2UKGgGR0Bt3xjFyaNNaAdNuAFoCEdAl4+cV1wHaHV9lChoBkdAbfcS+xnnMmgHTYEBaAhHQJeQnKbKA8V1fZQoaAZHQHIAhAbADaJoB01+AmgIR0CXkXmseXAudX2UKGgGR0BxTVF1B+nZaAdNzAFoCEdAl5GITbnHN3V9lChoBkdAcqGLdN34bmgHTWQBaAhHQJeSKeNDMNd1fZQoaAZHQG5FVVo6CDpoB01TAWgIR0CXlEbCrLhadX2UKGgGR0BbwXFglWwNaAdN6ANoCEdAl5XUjTrmhnV9lChoBkdAcdRu9OARTWgHTfgCaAhHQJeXW9AX2uh1fZQoaAZHQG6goAfdRBNoB01HAWgIR0CXl6zCk43ndX2UKGgGR0BgHOEZiuuBaAdN6ANoCEdAl5f3QID5kHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |